
The XtreemFS Installation and User Guide
Version 1.3

ii

XtreemFS is available from the XtreemFS website (www.XtreemFS.org).

This document is c© 2009-2011 by Björn Kolbeck, Jan Stender, Michael Berlin, Paul
Seiferth, Felix Langner, NEC HPC Europe, Felix Hupfeld, Juan Gonzales. All rights
reserved.

http://www.XtreemFS.org

Contents

1 Quick Start xi

2 About XtreemFS 1

2.1 What is XtreemFS? . 1

What makes XtreemFS a distributed file system? . . . 1

What makes XtreemFS a replicated file system? 1

2.2 Is XtreemFS suitable for me? . 2

XtreemFS is ... 2

XtreemFS is not ... 2

2.3 Core Features . 3

Distribution. 3

Replication. 3

Striping. 3

Security. 4

2.4 Architecture . 4

XtreemFS Components. 4

3 XtreemFS Services 7

3.1 Installation . 7

3.1.1 Prerequisites . 7

3.1.2 Installing from Pre-Packaged Releases 7

3.1.3 Installing from Sources . 8

3.2 Configuration . 8

3.2.1 A Word about UUIDs . 9

3.2.2 Automatic DIR Discovery 9

3.2.3 Authentication . 9

3.2.4 Configuring SSL Support 10

Converting PEM files to PKCS#12 10

iii

iv CONTENTS

Importing trusted certificates from PEM into a JKS 11

Sample Setup . 11

3.2.5 List of Configuration Options 13

admin_password optional 13

authentication_provider 13

babudb.baseDir . 14

babudb.cfgFile optional 14

babudb.checkInterval optional 14

babudb.compression optional 14

babudb.debug.level optional 15

babudb.logDir . 15

babudb.maxLogfileSize optional 15

babudb.pseudoSyncWait optional 16

babudb.sync . 17

babudb.worker.maxQueueLength optional 17

babudb.worker.numThreads optional 18

capability_secret . 18

capability_timeout optional 18

checksums.enabled . 18

checksums.algorithm . 18

debug.level optional . 19

debug.categories optional 20

dir_service.host . 20

dir_service.port . 20

discover optional . 21

enable_local_FIFOs optional 21

flease.dmax_ms optional 21

flease.lease_timeout_ms optional 21

flease.message_to_ms optional 22

flease.retries optional 22

geographic_coordinates optional 22

hostname optional . 22

http_port . 22

ignore_capabilities optional 23

listen.address optional 23

listen.port . 23

local_clock_renewal . 23

CONTENTS v

monitoring.enabled . 24

monitoring.email.programm 24

monitoring.email.receiver 24

monitoring.email.sender 24

monitoring.max_warnings 24

monitoring.service_timeout_s 25

no_atime . 25

object_dir . 25

osd_check_interval . 25

policy_dir optional . 25

remote_time_sync . 26

renew_to_caps optional . 26

report_free_space . 26

socket.send_buffer_size optional 26

socket.recv_buffer_size optional 26

ssl.enabled . 27

ssl.grid_ssl . 27

ssl.service_creds . 27

ssl.service_creds.container 27

ssl.service_creds.pw 28

ssl.trusted_certs . 28

ssl.trusted_certs.container 28

ssl.trust_manager optional 28

ssl.trusted_certs.pw 28

startup.wait_for_dir 28

storage_layout optional, experimental 29

uuid . 29

3.3 Execution and Monitoring . 29

3.3.1 Starting and Stopping the XtreemFS services 29

3.3.2 Web-based Status Page . 29

3.3.3 DIR Service Monitoring . 30

3.4 Troubleshooting . 30

vi CONTENTS

4 XtreemFS Client 33

4.1 Installation . 33

4.1.1 Prerequisites . 33

4.1.2 Installing from Pre-Packaged Releases 33

4.1.3 Installing from Sources . 34

4.2 Volume Management . 34

4.2.1 Creating Volumes . 35

4.2.2 Deleting Volumes . 35

4.2.3 Listing all Volumes . 35

4.3 Accessing Volumes . 36

4.3.1 Mounting and Un-mounting 36

4.3.2 Mount Options . 37

4.4 Troubleshooting . 37

5 XtreemFS Tools 39

5.1 Installation . 39

5.1.1 Prerequisites . 39

5.1.2 Installing from Pre-Packaged Releases 39

5.1.3 Installing from Sources . 40

5.2 Admin Tools . 40

5.2.1 MRC Database Conversion 41

5.2.2 Scrubbing and Cleanup . 41

5.2.3 Setting the Service Status . 42

5.2.4 Snapshots . 43

5.3 User Tools . 44

5.3.1 xtfsutil for Files . 44

Changing the Replication Policy 45

Adding and Removing Replicas 45

5.3.2 xtfsutil for Volumes . 46

Changing the Default Striping Policies 46

Changing the Default Replication Policy 47

5.3.3 Changing OSD and Replica Selection Policies 47

5.3.4 Setting and Listing Policy Attributes 48

5.3.5 Modifying Access Control Lists 48

5.4 Vivaldi . 49

5.5 Test Tools . 49

CONTENTS vii

6 Replication 51

6.1 Read/Write File Replication . 51

6.1.1 Technical Details . 51

6.1.2 Limitations . 52

6.1.3 Setup . 52

6.2 Read-Only File Replication . 52

6.2.1 Limitations . 52

6.2.2 Setup . 53

6.3 MRC and DIR Replication . 53

6.3.1 Technical Details . 53

6.3.2 Setup . 53

Enabling and Configuring MRC Replication 53

Enabling and Configuring DIR Replication 54

Startup and Access . 55

7 Policies 57

7.1 Authentication Policies . 57

7.1.1 UNIX uid/gid - NullAuthProvider 57

7.1.2 Plain SSL Certificates - SimpleX509AuthProvider 58

7.2 Authorization Policies . 58

7.3 OSD and Replica Selection Policies 59

7.3.1 Attributes . 59

7.3.2 Predefined Policies . 59

Filtering Policies . 59

Grouping Policies . 60

Sorting Policies . 61

7.4 Striping Policies . 61

7.5 Plug-in Policies . 62

A Support 63

B Hadoop Integration 65

B.1 Introduction . 65

B.2 Quick Start . 66

C Command Line Utilities 69

viii CONTENTS

Changes

Summary of important changes in release 1.3:

• new client
We have re-written the client from scratch. The new client supports automatic
fail-over for replicated files and metadata caching.

• libxtreemfs
libxtreemfs is a convenient C++ library to use XtreemFS directly without a
mounted client or the VFS layer. The new client is built on top of this library.
A java version of libxtreemfs is planned.

• File system snapshots
XtreemFS now supports snapshots. A snapshot reflects a momentary state of
a volume or directory. It can be mounted and read-only accessed.

• Full file replication
Starting with this release, XtreemFS supports full file replication. Read/write
replicated files offer regular file system semantics and work with all applica-
tions.

• DIR, MRC replication
The DIR and MRC can now be replicated using the BabuDB database replica-
tion. The replication works with a primary and backups. If the primary fails,
a backup will automatically take over after a short time.

• xtfsutil
We have replaced all user tools with a single binary. The new tool doesn’t
require java anymore.

• OSD drain
With OSD drain, files can be removed from an OSD without interrupting the
system. A fully drained OSD can be removed from the system without data
loss.

Summary of important changes in release 1.2.1:

• server status
Each server (especially OSDs) have a persistent status which can be online or
dead/removed. This status must be changed manually and is used by the scrub-
ber tool to identify dead OSDs which have been removed from the system.

ix

x CONTENTS

• enhanced scrubber
The scrubber is now able to remove replicas which are stored on OSDs that are
marked as dead/removed. The scrubber will create new replicas for that file if
a complete replica still exists and a sufficient number of OSDs is available. In
addition, the scrubber marks replicas as “complete” if they contain all objects
of the original file.

This is a summary of the most important changes in release 1.2:

• renamed binaries
We renamed most binaries to conform with Linux naming conventions, e.g.
xtfs_mount is now mount.xtreemfs. However, we added links with the old
names for compatibility. For a full list see Sec. C.

• “Grid SSL” mode
In this mode, SSL is only used for authentication (handshake) and regular TCP
is used for communication afterwards. For more details see Sec. 3.2.4.

• the xctl utility
The new release includes a command line utility xctl for starting and stopping
the services. This tool is useful if you don’t want a package based installation
or if you don’t have root privileges.

• vivaldi
XtreemFS now includes modules for calculating Vivaldi network coordinates
to reflect the latency between OSDs and clients. An OSD and replica selection
policy for vivaldi is also available. For details, see Sec. 5.4.

Chapter 1

Quick Start

This is the very short version to help you set up a local installation of XtreemFS.

1. Download XtreemFS RPMs/DEBs and install

(a) Download the RPMs or DEBs for your system from the XtreemFS web-
site (http://www.xtreemfs.org)

(b) open a root console (su or sudo)
(c) install with rpm -Uhv xtreemfs*-1.3.x.rpm

2. Start the Directory Service:
/etc/init.d/xtreemfs-dir start

3. Start the Metadata Server:
/etc/init.d/xtreemfs-mrc start

4. Start the OSD:
/etc/init.d/xtreemfs-osd start

5. If not already loaded, load the FUSE kernel module:
modprobe fuse

6. Depending on your distribution, you may have to add users to a special group
to allow them to mount FUSE file systems. In openSUSE users must be in the
group trusted, in Ubuntu in the group fuse. You may need to log out and
log in again for the new group membership to become effective.

7. You can now close the root console and work as a regular user.

8. Wait a few seconds for the services to register at the directory service. You
can check the registry by opening the DIR status page in your favorite web
browser http://localhost:30638.

9. Create a new volume with the default settings:
mkfs.xtreemfs localhost/myVolume

10. Create a mount point:
mkdir ˜/xtreemfs

xi

http://www.xtreemfs.org
http://localhost:30638

xii CHAPTER 1. QUICK START

11. Mount XtreemFS on your computer:

mount.xtreemfs localhost/myVolume ~/xtreemfs

12. Have fun ;-)

13. To un-mount XtreemFS:
umount.xtreemfs ˜/xtreemfs

You can also mount this volume on remote computers. First make sure that the
ports 32636, 32638 and 32640 are open for incoming TCP connections. You must
also specify a hostname that can be resolved by the remote machine! This hostname
has to be used instead of localhost when mounting.

Chapter 2

About XtreemFS

Since you decided to take a look at this user guide, you probably read or heard about
XtreemFS and want to find out more. This chapter contains basic information about
the characteristics and the architecture of XtreemFS.

2.1 What is XtreemFS?

XtreemFS is a file system for a variety of different use cases and purposes. Since it
is impossible to categorize or explain XtreemFS in a single sentence, we introduce
XtreemFS by means of its two most significant properties: XtreemFS is a globally
distributed and replicated file system.

What makes XtreemFS a distributed file system? We consider a file system as
distributed if files are stored across a number of servers rather than a single server or
local machine. Unlike local or network file systems, a distributed file system aggre-
gates the capacity of multiple servers. As a globally distributed file system, XtreemFS
servers may be dispersed all over the world. The capacity can be increased and de-
creased by adding and removing servers, but from a user’s perspective, the file system
appears to reside on a single machine.

What makes XtreemFS a replicated file system? We call it a replicated file system
because replication is one of its most prominent features. XtreemFS is capable of
maintaining replicas of files on different servers. Thus, files remain accessible even if
single servers, hard disks or network connections fail. Besides, replication yields ben-
efits in terms of data rates and access times. Different replicas of a file can be accessed
simultaneously on different servers, which may lead to a better performance com-
pared to simultaneous accesses on a single server. By placing file replicas close the
consuming users and applications in a globally distributed installation, the effects
of network latency and bandwidth reduction in wide area networks can be miti-
gated. However, replication is transparent to users and applications that work with
XtreemFS; the file system is capable of controlling the life cycle and access of replicas
without the need for human intervention or modifications of existing applications.

1

2 CHAPTER 2. ABOUT XTREEMFS

2.2 Is XtreemFS suitable for me?

If you consider using XtreemFS, you may be a system administrator in search of
a better and more flexible alternative to your current data management solution.
Or you may be a private user in need of a file system that can be easily set up and
accessed from any machine in the world. You might also be someone looking for
an open-source solution to manage large amounts of data distributed across multiple
sites. In any case, you will wonder if XtreemFS fulfills your requirements. As a
basis for your decision, the following two paragraphs point out the characteristics of
XtreemFS.

XtreemFS is ...

... an open source file system. It is distributed freely and can be used by anyone
without limitations.

... a POSIX file system. Users can mount and access XtreemFS like any other
common file system. Application can access XtreemFS via the standard file
system interface, i.e. without having to be rebuilt against a specialized API.
XtreemFS supports a POSIX-compliant access control model.

... a multi-platform file system. Server and client modules can be installed and
run on different platforms, including most Linux distributions, Solaris, Mac
OS X and Windows.

... a globally distributed file system. Unlike cluster file systems, an XtreemFS
installation is not restricted to a single administrative domain or cluster. It can
span the globe and may comprise servers in different administrative domains.

... a failure-tolerant file system. As stated in the previous section, replication can
keep the system alive and the data safe. In this respect, XtreemFS differs from
most other open-source file systems.

... a secure file system. To ensure security in an untrusted, worldwide network,
all network traffic can be encrypted with SSL connections, and users can be
authenticated with X.509 certificates.

... a customizable file system. Since XtreemFS can be used in different environ-
ments, we consider it necessary to give administrators the possibility of adapt-
ing XtreemFS to the specific needs of their users. Customizable policies make
it possible change the behavior of XtreemFS in terms of authentication, access
control, striping, replica placement, replica selection and others. Such policies
can be selected from a set of predefined policies, or implemented by adminis-
trators and plugged in the system.

XtreemFS is not ...

... a high-performance cluster file system. Even though XtreemFS reaches accept-
able throughput rates on a local cluster, it cannot compete with specialized
cluster file systems in terms of raw performance numbers. Most such file sys-
tems have an optimized network stack and protocols, and a substantially larger

2.3. CORE FEATURES 3

development team. If you have huge amounts of data on a local cluster with
little requirements but high throughput rates to them, a cluster file system is
probably the better alternative.

... a replacement for a local file system. Even though XtreemFS can be set up
and mounted on a single machine, the additional software stack degrades the
performance, which makes XtreemFS a bad alternative.

2.3 Core Features

The core functionality of XtreemFS is characterized by a small set of features, which
are explained in the following.

Distribution. An XtreemFS installation comprises multiple servers that may run
on different nodes connected on a local cluster or via the Internet. Provided that
the servers are reachable, a client module installed on any machine in the world
can access the installation. A binary communication protocol based on Google’s
Protocol Buffers ensures an efficient communication with little overhead between
clients and servers. XtreemFS ensures that the file system remains in a consistent
state even if multiple clients access a common set of files and directories. Similar
to NFS, it offers a close-to-open consistency model in the event of concurrent file
accesses.

Replication. Starting with release 1.3, XtreemFS supports the replication of muta-
ble files as well as a replicated Directory Service (DIR) and Metadata Catalog (MRC).
All components in XtreemFS can be replicated for redundancy which results in a
fully fault-tolerant file system. The replication in XtreemFS works with hot back-
ups, which automatically take over if the primary replica fails.

Since version 1.0, XtreemFS supports read-only replication. A file may have multiple
replicas, provided that the it was explicitly made read-only before, which means that
its content cannot be changed anymore. This kind of replication can be used to make
write-once files available to many consumers, or to protect them from losses due to
hardware failures. Besides complete replicas that are immediately synchronized after
having been created, XtreemFS also supports partial replicas that are only filled with
content on demand. They can e.g. be used to make large files accessible to many
clients, of which only parts need to be accessed.

Striping. To ensure acceptable I/O throughput rates when accessing large files,
XtreemFS supports striping. A striped file is split into multiple chunks (“stripes”),
which are stored on different storage servers. Since different stripes can be accessed in
parallel, the whole file can be read or written with the aggregated network and stor-
age bandwidth of multiple servers. XtreemFS currently supports the RAID0 striping
pattern, which splits a file up in a set of stripes of a fixed size, and distributes them
across a set of storage servers in a round-robin fashion. The size of an individual
stripe as well as the number of storage servers used can be configured on a per-file or
per-directory basis.

4 CHAPTER 2. ABOUT XTREEMFS

Security. To enforce security, XtreemFS offers mechanisms for user authentication
and authorization, as well as the possibility to encrypt network traffic.

Authentication describes the process of verifying a user’s or client’s identity. By
default, authentication in XtreemFS is based on local user names and depends on the
trustworthiness of clients and networks. In case a more secure solution is needed,
X.509 certificates can be used.

Authorization describes the process of checking user permissions to execute an oper-
ation. XtreemFS supports the standard UNIX permission model, which allows for
assigning individual access rights to file owners, owning groups and other users.

Authentication and authorization are policy-based, which means that different mod-
els and mechanisms can be used to authenticate and authorize users. Besides, the
policies are pluggable, i.e. they can be freely defined and easily extended.

XtreemFS uses unauthenticated and unencrypted TCP connections by default. To
encrypt all network traffic, services and clients can establish SSL connections. How-
ever, using SSL requires that all users and services have valid X.509 certificates.

2.4 Architecture

XtreemFS implements an object-based file system architecture (Fig. 2.1): file content is
split into a series of fixed-size objects and stored across storage servers, while meta-
data is stored on a separate metadata server. The metadata server organizes file sys-
tem metadata as a set of volumes, each of which implements a separate file system
namespace in the form of a directory tree.

In contrast to block-based file systems, the management of available and used storage
space is offloaded from the metadata server to the storage servers. Rather than inode
lists with block addresses, file metadata contains lists of storage servers responsible
for the objects, together with striping policies that define how to translate between
byte offsets and object IDs. This implies that object sizes may vary from file to file.

XtreemFS Components. An XtreemFS installation contains three types of servers
that can run on one or several machines (Fig. 2.1):

• DIR - Directory Service
The directory service is the central registry for all services in XtreemFS. The
MRC uses it to discover storage servers.

• MRC - Metadata and Replica Catalog
The MRC stores the directory tree and file metadata such as file name, size
or modification time. Moreover, the MRC authenticates users and authorizes
access to files.

• OSD - Object Storage Device
An OSD stores arbitrary objects of files; clients read and write file data on
OSDs.

2.4. ARCHITECTURE 5

Figure 2.1: The XtreemFS architecture and components.

These servers are connected by the client to a file system. A client mounts one of
the volumes of the MRC in a local directory. It translates file system calls into RPCs
sent to the respective servers.

The client is implemented as a FUSE user-level driver that runs as a normal process.
FUSE itself is a kernel-userland hybrid that connects the user-land driver to Linux’
Virtual File System (VFS) layer where file system drivers usually live.

6 CHAPTER 2. ABOUT XTREEMFS

Chapter 3

XtreemFS Services

This chapter describes how to install and set up the server side of an XtreemFS
installation.

3.1 Installation

When installing XtreemFS server components, you can choose from two different
installation sources: you can download one of the pre-packaged releases that we create
for most Linux distributions or you can install directly from the source tarball.

Note that the source tarball contains the complete distribution of XtreemFS, which
also includes client and tools. Currently, binary distributions of the server are only
available for Linux.

3.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

3.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva) you can install the
package with

$> rpm -i xtreemfs-server-1.3.x.rpm xtreemfs-backend-1.3.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-server-1.3.x.deb xtreemfs-backend-1.3.x.deb

7

8 CHAPTER 3. XTREEMFS SERVICES

To install the server components, the following package is required: jre ≥ 1.6.0 for
RPM-based releases, java6-runtime for Debian-based releases. If you already have
a different distribution of Java6 on your system, you can alternatively install the
XtreemFS server packages as follows:

$> rpm -i --nodeps xtreemfs-server-1.3.x.rpm \
xtreemfs-backend-1.3.x.rpm

on RPM-based distributions,

$> dpkg -i --ignore-depends java6-runtime \
xtreemfs-server-1.3.x.deb xtreemfs-backend-1.3.x.deb

on Debian-based distributions.
To ensure that your local Java6 installation is used, is necessary to set the JAVA_HOME
environment variable to your Java6 installation directory, e.g.

$> export JAVA_HOME=/usr/java6

Both RPM and Debian-based packages will install three init.d scripts to start up the
services (xtreemfs-dir, xtreemfs-mrc, xtreemfs-osd). If you want the services
to be started automatically when booting up the system, you can execute insserv
<init.d script> (SuSE), chkconfig –add <init.d script> (Mandriva, Red-
Hat) or update-rc.d <init.d script> defaults (Ubuntu, Debian).

3.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make server

This will build the XtreemFS server and Java-based tools. When done, execute

$> sudo make install-server

to install the server components. Finally, you will be asked to execute a post-
installation script

$> sudo /etc/xos/xtreemfs/postinstall_setup.sh

to complete the installation.

3.2 Configuration

After having installed the XtreemFS server components, it is recommendable to
configure the different services. This section describes the different configuration
options.
XtreemFS services are configured via Java properties files that can be modified with
a normal text editor. Default configuration files for a Directory Service, MRC and
OSD are located in /etc/xos/xtreemfs/.

3.2. CONFIGURATION 9

3.2.1 A Word about UUIDs

XtreemFS uses UUIDs (Universally Unique Identifiers) to be able to identify services
and their associated state independently from the machine they are installed on. This
implies that you cannot change the UUID of an MRC or OSD after it has been used
for the first time!

The Directory Service resolves UUIDs to service endpoints, where each service end-
point consists of an IP address or hostname and port number. Each endpoint is
associated with a netmask that indicates the subnet in which the mapping is valid. In
theory, multiple endpoints can be assigned to a single UUID if endpoints are associ-
ated with different netmasks. However, it is currently only possible to assign a single
endpoint to each UUID; the netmask must be “*”, which means that the mapping
is valid in all networks. Upon first start-up, OSDs and MRCs will auto-generate the
mapping if it does not exist, by using the first available network device with a public
address.

Changing the IP address, hostname or port is possible at any time. Due to the
caching of UUIDs in all components, it can take some time until the new UUID
mapping is used by all OSDs, MRCs and clients. The TTL (time-to-live) of a mapping
defines how long an XtreemFS component is allowed to keep entries cached. The
default value is 3600 seconds (1 hour). It should be set to shorter durations if services
change their IP address frequently.

To create a globally unique UUID you can use tools like uuidgen. During instal-
lation, the post-install script will automatically create a UUID for each OSD and
MRC if it does not have a UUID assigned.

3.2.2 Automatic DIR Discovery

OSDs and MRCs are capable of automatically discovering a Directory Service. If
automatic DIR discovery is switched on, the service will broadcast requests to the
local LAN and wait up to 10s for a response from a DIR. The services will select the
first DIR which responded, which can lead to non-deterministic behavior if multiple
DIR services are present. Note that the feature works only in a local LAN envi-
ronment, as broadcast messages are not routed to other networks. Local firewalls
on the computers on which the services are running can also prevent the automatic
discovery from working.

Security: The automatic discovery is a potential security risk when used in un-
trusted environments as any user can start-up DIR services.

A statically configured DIR address and port can be used to disable DIR discovery in
the OSD and MRC (see Sec. 3.2.5, dir_service). By default. the DIR responds to
UDP broadcasts. To disable this feature, set discover = false in the DIR service
config file.

3.2.3 Authentication

Administrators may choose the way of authenticating users in XtreemFS. Authenti-
cation Providers are pluggable modules that determine how users are authenticated.
For further details, see Sec. 7.1.

10 CHAPTER 3. XTREEMFS SERVICES

To set the authentication provider, it is necessary to set the following property in
the MRC configuration file:

authentication_provider = <classname>

By default, the following class names can be used:

• org.xtreemfs.common.auth.NullAuthProvider
uses local user and group IDs

• org.xtreemfs.common.auth.SimpleX509AuthProvider
uses X.509 certificates; user and group IDs are extracted from the distinguished
names of the certificates

3.2.4 Configuring SSL Support

In order to enable certificate-based authentication in an XtreemFS installation, ser-
vices need to be equipped with X.509 certificates. Certificates are used to establish
a mutual trust relationship among XtreemFS services and between the XtreemFS
client and XtreemFS services.
Note that it is not possible to mix SSL-enabled and non-SSL services in an XtreemFS
installation! If you only need authentication based on certificates without SSL, you
can use the “grid SSL” mode. In this mode XtreemFS will only do an SSL handshake
and fall back to plain TCP for communication. This mode is insecure (not encrypted
and records are not signed) but just as fast as the non-SSL mode. If this mode is
enabled, all client tools must be used with the pbrpcg:// scheme prefix.
Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have been created and signed, the credentials may need to be converted into the
correct file format. XtreemFS services also need a trust store that contains all trusted
Certification Authority certificates.
By default, certificates and credentials for XtreemFS services are stored in

/etc/xos/xtreemfs/truststore/certs

Converting PEM files to PKCS#12

The simplest way to provide the credentials to the services is by converting your
signed certificate and private key into a PKCS#12 file using openssl:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service. The passwords chosen when
asked must be set as a property in the corresponding service configuration file.

3.2. CONFIGURATION 11

Importing trusted certificates from PEM into a JKS

The certificate (or multiple certificates) from your CA (or CAs) can be imported
into a Java Keystore (JKS) using the Java keytool which comes with the Java JDK
or JRE.

Execute the following steps for each CA certificate using the same keystore file.

$> keytool -import -alias rootca -keystore trusted.jks \
-trustcacerts -file ca-cert.pem

This will create a new Java Keystore trusted.jks with the CA certificate in the cur-
rent working directory. The password chosen when asked must be set as a property
in the service configuration files.

Note: If you get the following error

keytool error: java.lang.Exception: Input not an X.509 certificate

you should remove any text from the beginning of the certificate (until the ––-BEGIN
CERTIFICATE––- line).

Sample Setup

Users can easily set up their own CA (certificate authority) and create and sign cer-
tificates using openssl for a test setup.

1. Set up your test CA.

(a) Create a directory for your CA files

$> mkdir ca

(b) Create a private key and certificate request for your CA.

$> openssl req -new -newkey rsa:1024 -nodes -out ca/ca.csr \
-keyout ca/ca.key

Enter something like XtreemFS-DEMO-CA as the common name (or
something else, but make sure the name is different from the server and
client name!).

(c) Create a self-signed certificate for your CA which is valid for one year.

$> openssl x509 -trustout -signkey ca/ca.key -days 365 -req \
-in ca/ca.csr -out ca/ca.pem

(d) Create a file with the CA’s serial number

$> echo "02" > ca/ca.srl

2. Set up the certificates for the services and the XtreemFS Client.
Replace service with dir, mrc, osd and client.

(a) Create a private key for the service.
Use XtreemFS-DEMO-service as the common name for the certificate.

12 CHAPTER 3. XTREEMFS SERVICES

$> openssl req -new -newkey rsa:1024 -nodes
-out service.req
-keyout service.key

(b) Sign the certificate with your demo CA.
The certificate is valid for one year.
$> openssl x509 -CA ca/ca.pem -CAkey ca/ca.key

-CAserial ca/ca.srl -req
-in service.req
-out service.pem -days 365

(c) Export the service credentials (certificate and private key) as a PKCS#12
file.
Use “passphrase” as export password. You can leave the export password
empty for the XtreemFS Client to avoid being asked for the password on
mount.
$> openssl pkcs12 -export -in service.pem -inkey service.key

-out service.p12 -name "service "

(d) Copy the PKCS#12 file to the certificates directory.
$> mkdir -p /etc/xos/xtreemfs/truststore/certs
$> cp service.p12 /etc/xos/xtreemfs/truststore/certs

3. Export your CA’s certificate to the trust store and copy it to the certificate dir.
You should answer “yes” when asked “Trust this certificate”.
Use “passphrase” as passphrase for the keystore.

$> keytool -import -alias ca -keystore trusted.jks \
-trustcacerts -file ca/ca.pem

$> cp trusted.jks /etc/xos/xtreemfs/truststore/certs

4. Configure the services. Edit the configuration file for all your services. Set the
following configuration options (see Sec. 3.2 for details).
ssl.enabled = true
ssl.service_creds.pw = passphrase
ssl.service_creds.container = pkcs12
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/service.p12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/trusted.jks
ssl.trusted_certs.pw = passphrase
ssl.trusted_certs.container = jks

5. Start up the XtreemFS services (see Sec. 3.3.1).

6. Create a new volume (see Sec. 4.2.1 for details).
Use

$> mkfs.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 pbrpcs://localhost/test

for SSL-enabled servers, or

$> mkfs.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 pbrpcg://localhost/test

3.2. CONFIGURATION 13

for Grid-SSL-enabled servers.

7. Mount the volume (see Sec. 4.3 for details).

Use

$> mount.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 pbrpcs://localhost/test /mnt

for SSL-enabled servers, or

$> mount.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 pbrpcg://localhost/test /mnt

for Grid-SSL-enabled servers.

3.2.5 List of Configuration Options

All configuration parameters that may be used to define the behavior of the different
services are listed in this section. Unless marked as optional, a parameter has to occur
(exactly once) in a configuration file. Parameters marked as experimental belong to
the DIR and MRC replication feature, which is currently under development. It is
not recommended to mess about with these options if you want to use XtreemFS in
production.

admin_password optional

Services DIR, MRC, OSD
Values String
Default
Description Defines the admin password that must be sent to authorize requests

like volume creation, deletion or shutdown. The same password is
also used to access the HTTP status page of the service (user name is
admin).

authentication_provider

Services MRC
Values Java class name
Default org.xtreemfs.common.auth.NullAuthProvider
Description Defines the Authentication Provider to use to retrieve the user iden-

tity (user ID and group IDs). See Sec. 3.2.3 for details.

14 CHAPTER 3. XTREEMFS SERVICES

babudb.baseDir

Services DIR, MRC
Values absolute file system path to a directory
Default DIR: /var/lib/xtreemfs/dir/database

MRC: /var/lib/xtreemfs/mrc/database
Description The directory in which the Directory Service or MRC will store their

databases. This directory should never be on the same partition as any
OSD data, if both services reside on the same machine. Otherwise,
deadlocks may occur if the partition runs out of free disk space.

babudb.cfgFile optional

Services DIR, MRC
Values a file name
Default DIR: config.db

MRC: config.db
Description Name for the database configuration file.

babudb.checkInterval optional

Services DIR, MRC
Values a positive integer value
Default DIR: 300

MRC: 300
Description The number of seconds between two checks of the disk log size for au-

tomatic checkpointing. Set this value to 0 to disable automatic check-
pointing.

babudb.compression optional

Services DIR, MRC
Values true or false
Default DIR: false

MRC: false
Description Flag that determines whether database content shall be compressed or

not.

3.2. CONFIGURATION 15

babudb.debug.level optional

Services DIR, MRC
Values 0, 1, 2, 3, 4, 5, 6, 7
Default DIR: 4

MRC: 4
Description This is the debug level for BabuDB only. The debug level determines

the amount and detail of information written to logfiles. Any debug
level includes log messages from lower debug levels. The following
log levels exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

babudb.logDir

Services DIR, MRC
Values absolute file system path
Default DIR: /var/lib/xtreemfs/dir/db-log

MRC: /var/lib/xtreemfs/mrc/db-log
Description The directory the MRC uses to store database logs. This directory

should never be on the same partition as any OSD data, if both ser-
vices reside on the same machine. Otherwise, deadlocks may occur if
the partition runs out of free disk space.

babudb.maxLogfileSize optional

Services DIR, MRC
Values a positive integer value
Default DIR: 16777216

MRC: 16777216
Description If automatic checkpointing is enabled, a checkpoint is created when

the disk logfile exceeds maxLogfileSize bytes. The value should be rea-
sonable large to keep the checkpointing-rate low. However, it should
not be too large as a large disk log increases the recovery time after a
crash.

16 CHAPTER 3. XTREEMFS SERVICES

babudb.pseudoSyncWait optional

Services DIR, MRC
Values a positive integer value
Default DIR: 200

MRC: 0
Description The BabuDB disk logger can batch multiple operations into a single

write+fsync to increase the throughput. This does only work if there
are operations executed in parallel by the worker threads. In turn, if
you work on a single database it becomes less efficient. To circumvent
this problem, BabuDB offers a pseudo-sync mode which is similar
to the PostgreSQL write-ahead log (WAL). If pseduoSyncWait is set
to a value larger then 0, this pseudo-sync mode is enabled. In this
mode, insert operations are acknowledged as soon as they have been
executed on the in-memory database index. The disk logger will ex-
ecute a batch write of up to 500 operations followed by a single sync
(see syncMode) every pseudoSyncWait ms. This mode is considerably
faster than synchronous writes but you can lose data in case of a crash.
In contrast to ASYNC mode the data loss is limited to the operations
executed in the last pseudoSyncWait ms.

3.2. CONFIGURATION 17

babudb.sync

Services DIR, MRC
Values ASYNC, SYNC_WRITE_METADATA, SYNC_WRITE,

FDATASYNC or FSYNC
Default DIR: FSYNC

MRC: ASYNC
Description The sync mode influences how operations are committed to the disk

log before the operation is acknowledged to the caller.

- ASYNC mode the writes to the disk log are buffered in memory
by the operating system. This is the fastest mode but will lead
to data loss in case of a crash, kernel panic or power failure.

- SYNC_WRITE_METADATA opens the file with O_SYNC,
the system will not buffer any writes. The operation will
be acknowledged when data has been safely written to disk.
This mode is slow but offers maximum data safety. However,
BabuDB cannot influence the disk drive caches, this depends on
the OS and hard disk model.

- SYNC_WRITE similar to SYNC_WRITE_METADATA but
opens file with O_DSYNC which means that only the data is
commit to disk. This can lead to some data loss depending on
the implementation of the underlying file system. Linux does
not implement this mode.

- FDATASYNC is similar to SYNC_WRITE but opens the file
in asynchronous mode and calls fdatasync() after writing the
data to disk.

- FSYNC is similar to SYNC_WRITE_METADATA but opens
the file in asynchronous mode and calls fsync() after writing the
data to disk.

For best throughput use ASYNC, for maximum data safety use
FSYNC.

babudb.worker.maxQueueLength optional

Services DIR, MRC
Values a positive integer value
Default DIR: 250

MRC: 250
Description If set to a value larger than 0, this is the maximum number of requests

which can be in a worker’s queue. This value should be used if you
have pseudo-synchronous mode enabled to ensure that your queues
don’t grow until you get an out of memory exception. Can be set to
0 if pseudo-sync mode is disabled.

18 CHAPTER 3. XTREEMFS SERVICES

babudb.worker.numThreads optional

Services DIR, MRC
Values a positiv integer value
Default DIR: 0

MRC: 0
Description The number of worker threads to be used for database operations. As

BabuDB does not use locking, each database is handled by only one
worker thread. If there are more databases than worker threads, the
databases are distributed onto the available threads. The number of
threads should be set to a value smaller than the number of available
cores to reduce overhead through context switches. You can also set
the number of worker threads to 0. This will considerably reduce la-
tency, but may also decrease throughput on a multi-core system with
more than one database.

capability_secret

Services MRC, OSD
Values String
Default
Description Defines a shared secret between the MRC and all OSDs. The secret

is used by the MRC to sign capabilities, i.e. security tokens for data
access at OSDs. In turn, an OSD uses the secret to verify that the
capability has been issued by the MRC.

capability_timeout optional

Services MRC
Values seconds
Default 600
Description Defines the relative time span for which a capability is valid after hav-

ing been issued.

checksums.enabled

Services OSD
Values true, false
Default false
Description If set to true, the OSD will calculate and store checksums for newly

created objects. Each time a checksummed object is read, the check-
sum will be verified.

checksums.algorithm

Services OSD
Values Adler32, CRC32
Default Adler32
Description Must be specified if checksums.enabled is enabled. This property

defines the algorithm used to create OSD checksums.

3.2. CONFIGURATION 19

debug.level optional

Services DIR, MRC, OSD
Values 0, 1, 2, 3, 4, 5, 6, 7
Default 6
Description The debug level determines the amount and detail of information

written to logfiles. Any debug level includes log messages from lower
debug levels. The following log levels exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

20 CHAPTER 3. XTREEMFS SERVICES

debug.categories optional

Services DIR, MRC, OSD
Values all, lifecycle, net, auth, stage, proc, db, misc
Default all
Description Debug categories determine the domains for which log messages will

be printed. By default, there are no domain restrictions, i.e. log mes-
sages form all domains will be included in the log. The following
categories can be selected:

all - no restrictions on the category

lifecycle - service lifecycle-related messages, including startup and shut-
down events

net - messages pertaining to network traffic and communication be-
tween services

auth - authentication and authorization-related messages

stage - messages pertaining to the flow of requests through the different
stages of a service

proc - messages about the processing of requests

db - messages that are logged in connection with database accesses

misc - any other log messages that do not fit in one of the previous
categories

Note that it is possible to specify multiple categories by means of a
comma or space-separated list.

dir_service.host

Services MRC, OSD
Values hostname or IP address
Default localhost
Description Specifies the hostname or IP address of the directory service (DIR)

at which the MRC or OSD should register. The MRC also uses this
Directory Service to find OSDs. If set to .autodiscover the ser-
vice will use the automatic DIR discovery mechanism (see Sec. 3.2.2).
(Note that the initial ‘.’ is used to avoid ambiguities with hosts called
“autodiscover”.)

dir_service.port

Services MRC, OSD
Values 1 .. 65535
Default 32638
Description Specifies the port on which the remote directory service is listening.

Must be identical to the listen_port in your directory service con-
figuration.

3.2. CONFIGURATION 21

discover optional

Services DIR
Values true, false
Default true
Description If set to true the DIR will received UDP broadcasts and advertise

itself in response to XtreemFS components using the DIR automatic
discovery mechanism. If set to false, the DIR will ignore all UDP
traffic. For details see Sec. 3.2.2.

enable_local_FIFOs optional

Services MRC
Values true, false
Default false
Description Enables support for FIFOs (names pipes) on the local machine for

compatibility reasons. If set to false, any attempt to open a FIFO
will be rejected with EIO. Even if set to true, FIFOs will not work
across multiple mounts.

flease.dmax_ms optional

Services OSD
Values milliseconds
Default 1000
Description Maximum clock drift between any two clocks in the system. If the

actual drift between two server clocks exceeds this value, read-write
replication may lead to inconsistent replicas. Since servers automat-
ically synchronize their clocks with the clock on the DIR, however,
the default 1000ms should be enough in most cases.

flease.lease_timeout_ms optional

Services OSD
Values milliseconds
Default 15000
Description Duration of a lease in milliseconds. For read-write-replicated files, the

lease timeout specifies the validity time span of a master lease. Shorter
lease timeouts guarantee a shorter fail-over period in the event of a
server crash, which however comes at the cost of an increased rate of
lease negotiations for each open file. The lease timeout should be set
to a value at least three times flease.message_to_ms.

22 CHAPTER 3. XTREEMFS SERVICES

flease.message_to_ms optional

Services OSD
Values milliseconds
Default 500
Description Time to wait for responses from other OSDs when negotiating leases

for replicated files. This value should be larger than the maximum
message round-trip time via TCP between any pair of OSDs.

flease.retries optional

Services OSD
Values 1..1000
Default 3
Description Number of times to retry acquiring a lease for a replicated file before

an IO error is sent to the client.

geographic_coordinates optional

Services DIR, MRC, OSD
Values String
Default
Description Specifies the geographic coordinates which are registered with the di-

rectory service. Used e.g. by the web console.

hostname optional

Services MRC, OSD
Values String
Default
Description If specified, it defines the host name that is used to register the service

at the directory service. If not specified, the host address defined in
listen.address will be used if specified. If neither hostname nor
listen.address are specified, the service itself will search for exter-
nally reachable network interfaces and advertise their addresses.

http_port

Services DIR, MRC, OSD
Values 1 .. 65535
Default 30636 (MRC), 30638 (DIR), 30640 (OSD)
Description Specifies the listen port for the HTTP service that returns the status

page.

3.2. CONFIGURATION 23

ignore_capabilities optional

Services OSD
Values true, false
Default false
Description When set to true, capability checks on the OSD are disabled. This

property should only be set to true for debugging purposes, as it ef-
fectively overrides any security mechanisms on the system.

listen.address optional

Services OSD
Values IP address
Default
Description If specified, it defines the interface to listen on. If not specified, the

service will listen on all interfaces (any).

listen.port

Services DIR, MRC, OSD
Values 1 .. 65535
Default DIR: 32638,

MRC: 32636,
OSD: 32640

Description The port to listen on for incoming connections (TCP). The OSD uses
the specified port for both TCP and UDP. Please make sure to config-
ure your firewall to allow incoming TCP traffic (plus UDP traffic, in
case of an OSD) on the specified port.

local_clock_renewal

Services MRC, OSD
Values milliseconds
Default 50
Description Reading the system clock is a slow operation on some systems

(e.g. Linux) as it is a system call. To increase performance,
XtreemFS services use a local variable which is only updated every
local_clock_renewal milliseconds.

24 CHAPTER 3. XTREEMFS SERVICES

monitoring.enabled

Services DIR
Values true, false
Default false
Description Enables the built-in monitoring tool in the directory service. If

enabled, the DIR will send alerts via emails if services are crashed
(i.e. do not send heartbeat messages). No alerts will be sent
for services which signed-off at the DIR. To enable monitor-
ing you also need to configure monitoring.email.receiver,
monitoring.email.program. In addition, you may want
to change the values for monitoring.email.sender,
monitoring.max_warnings, monitoring.service_timeout_s.

monitoring.email.programm

Services DIR
Values path
Default /usr/sbin/sendmail
Description Location of the sendmail binary to be used for sending alert mails.

See monitoring parameters.

monitoring.email.receiver

Services DIR
Values email address
Default -
Description Email address of recipient of alert emails. See monitoring parame-

ters.

monitoring.email.sender

Services DIR
Values email address
Default “XtreemFS DIR service <dir@localhost>”
Description Email address and sender name to use for sending alert mails. See

monitoring parameters.

monitoring.max_warnings

Services DIR
Values 0..N
Default 1
Description Number of alert mails to send for a single service which has

crashed/disconnected. Each alert mail contains a summary of all
crashed/disconnected services. See monitoring parameters.

3.2. CONFIGURATION 25

monitoring.service_timeout_s

Services DIR
Values 0..N seconds
Default 300
Description Time to wait for a heartbeat message before sending an alert email.

See monitoring parameters.

no_atime

Services MRC
Values true, false
Default true
Description The POSIX standard defines that the atime (timestamp of last file ac-

cess) is updated each time a file is opened, even for read. This means
that there is a write to the database and hard disk on the MRC each
time a file is read. To reduce the load, many file systems (e.g. ext3)
including XtreemFS can be configured to skip those updates for per-
formance. It is strongly suggested to disable atime updates by setting
this parameter to true.

object_dir

Services OSD
Values absolute file system path to a directory
Default /var/lib/xtreemfs/osd/
Description The directory in which the OSD stores the objects. This directory

should never be on the same partition as any DIR or MRC database,
if both services reside on the same machine. Otherwise, deadlocks
may occur if the partition runs out of free disk space!

osd_check_interval

Services MRC
Values seconds
Default 300
Description The MRC regularly asks the directory service for suitable OSDs to

store files on (see OSD Selection Policy, Sec. 7.3). This parameter
defines the interval between two updates of the list of suitable OSDs.

policy_dir optional

Services MRC, OSD, DIR
Values absolute file system path to a directory
Default
Description Directory containing user-defined policies and modules. When start-

ing a service, the policy directory will be searched for custom policies.
For further details on pluggable policies, see chapter 7.

26 CHAPTER 3. XTREEMFS SERVICES

remote_time_sync

Services MRC, OSD
Values milliseconds
Default 30,000
Description MRCs and OSDs all synchronize their clocks with the directory ser-

vice to ensure a loose clock synchronization of all services. This is re-
quired for leases to work correctly. This parameter defines the interval
in milliseconds between time updates from the directory service.

renew_to_caps optional

Services MRC
Values true, false
Default false
Description If set to true, the MRC allows capabilities to be renewed after they

timed out. This parameter should only be used for debugging pur-
poses, as it effectively overrides the revocation of access rights on a
file.

report_free_space

Services OSD
Values true, false
Default true
Description If set to true, the OSD will report its free space to the directory ser-

vice. Otherwise, it will report zero, which will cause the OSD not to
be used by the OSD Selection Policies (see Sec. 7.3).

socket.send_buffer_size optional

Services OSD
Values size in bytes
Default -1
Description The send buffer size in bytes for sockets. -1 indicates that the default

value (typically 128k) is used.

socket.recv_buffer_size optional

Services OSD
Values size in bytes
Default -1
Description The receive buffer size in bytes for sockets. -1 indicates that the default

value (typically 128k) is used.

3.2. CONFIGURATION 27

ssl.enabled

Services DIR, MRC, OSD
Values true, false
Default false
Description If set to true, the service will use SSL to authenticate and encrypt

connections. The service will not accept non-SSL connections if
ssl.enabled is set to true.

ssl.grid_ssl

Services DIR, MRC, OSD
Values true, false
Default false
Description In this mode the services and client will only use SSL for mutual au-

thentication with X.509 certificates (SSL handshake). After successful
authentication the communication is via plain TCP. This means that
there is no encryption and signing of records! This mode is com-
parable to HTTP connections with Digest authentication. It should
be used when certificate based authentication is required but perfor-
mance is more important than security, which is usually true in GRID
installations. If this mode is enabled, all client tools must be used with
the pbrpcg:// scheme prefix.

ssl.service_creds

Services DIR, MRC, OSD
Values path to file
Default DIR: /etc/xos/xtreemfs/truststore/certs/ds.p12,

MRC: /etc/xos/xtreemfs/truststore/certs/mrc.p12,
OSD: /etc/xos/xtreemfs/truststore/certs/osd.p12

Description Must be specified if ssl.enabled is enabled. Specifies the
file containing the service credentials (X.509 certificate and pri-
vate key). PKCS#12 and JKS format can be used, set
ssl.service_creds.container accordingly. This file is used dur-
ing the SSL handshake to authenticate the service.

ssl.service_creds.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default pkcs12
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.service_creds file.

28 CHAPTER 3. XTREEMFS SERVICES

ssl.service_creds.pw

Services DIR, MRC, OSD
Values String
Default
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the credentials file ssl.service_creds.

ssl.trusted_certs

Services DIR, MRC, OSD
Values path to file
Default /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
Description Must be specified if ssl.enabled is enabled. Specifies the file con-

taining the trusted root certificates (e.g. CA certificates) used to au-
thenticate clients.

ssl.trusted_certs.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default JKS
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.trusted_certs file.

ssl.trust_manager optional

Services DIR, MRC, OSD
Values Java class name
Default
Description Sets a custom trust manager class for SSL connections. The trust man-

ager is responsible for checking certificates when SSL connections are
established.

ssl.trusted_certs.pw

Services DIR, MRC, OSD
Values String
Default
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the trusted certificates file ssl.trusted_certs.

startup.wait_for_dir

Services MRC, OSD
Values 0..N seconds
Default 30
Description Time to wait for the DIR to become available during start up of the

MRC and OSD. If the DIR does not respond within this time the
MRC or OSD will abort startup.

3.3. EXECUTION AND MONITORING 29

storage_layout optional, experimental

Services OSD
Values HashStorageLayout
Default HashStorageLayout
Description Adjusts the internally used storage layout on the OSD. The storage

layout determines how an OSD stores its files and objects. Currently,
only HashStorageLayout is supported.

uuid

Services MRC, OSD
Values String, but limited to alphanumeric characters, - and .
Default
Description Must be set to a unique identifier, preferably a UUID according

to RFC 4122. UUIDs can be generated with uuidgen. Example:
eacb6bab-f444-4ebf-a06a-3f72d7465e40.

3.3 Execution and Monitoring

This section describes how to execute and monitor XtreemFS services.

3.3.1 Starting and Stopping the XtreemFS services

If you installed a pre-packaged release you can start, stop and restart the services with
the init.d scripts:

$> /etc/init.d/xtreemfs-dir start
$> /etc/init.d/xtreemfs-mrc start
$> /etc/init.d/xtreemfs-osd start

or

$> /etc/init.d/xtreemfs-dir stop
$> /etc/init.d/xtreemfs-mrc stop
$> /etc/init.d/xtreemfs-osd stop

To run init.d scripts, root permissions are required. Note that MRC and OSD will
wait for the Directory Service to become available before they start up. Once a
Directory Service as well as at least one OSD and MRC are running, XtreemFS is
operational.

3.3.2 Web-based Status Page

Each XtreemFS service can generate an HTML status page, which displays runtime
information about the service (Fig. 3.1). The HTTP server that generates the status
page runs on the port defined by the configuration property http_port; default
values are 30636 for MRCs, 30638 for Directory Services, and 30640 for OSDs.

30 CHAPTER 3. XTREEMFS SERVICES

Figure 3.1: OSD status web page

The status page of an MRC can e.g. be shown by opening

http://my-mrc-host.com:30636/

with a common web browser. If you set an admin password in the service’s config-
uration, you will be asked for authentication when accessing the status page. Use
admin as user name.

3.3.3 DIR Service Monitoring

The directory service has a built-in notification system that can send alert emails
if a service fails to send heartbeat messages for some time. The monitoring can be
enabled in the DIR configuration by setting monitoring = true.

3.4 Troubleshooting

Various issues may occur when attempting to set up an XtreemFS server component.
If a service fails to start, the log file often reveals useful information. Server log
files are located in /var/log/xtreemfs. Note that you can restrict granularity

3.4. TROUBLESHOOTING 31

and categories of log messages via the configuration properties debug.level and
debug.categories (see Sec. 3.2.5).

If an error occurs, please check if all of the following requirements are met:

• You have root permissions when starting the service. Running the init.d
scripts requires root permissions. However, the services themselves are started
on behalf of a user xtreemfs.

• DIR has been started before MRC and OSD. Problems may occur if a script
starts multiple services as background processes.

• There are no firewall restrictions that keep XtreemFS services from commu-
nicating with each other. The default ports that need to be open are: 32636
(MRC, TCP), 32638 (DIR, TCP), and 32640 (OSD, TCP & UDP).

• The MRC database version is correct. In case of an outdated database version,
the xtfs_mrcdbtool commands of the old and new XtreemFS version can
dump and restore the database, respectively (see Sec. 5.2.1).

• A network interface is available on the host. It may be either bound to an IPv4
or IPv6 address.

32 CHAPTER 3. XTREEMFS SERVICES

Chapter 4

XtreemFS Client

The XtreemFS client is needed to access an XtreemFS installation from a local or
remote machine. This chapter describes how to use the XtreemFS client in order to
work with XtreemFS like a local file system.

4.1 Installation

There are two different installation sources for the XtreemFS Client: pre-packaged
releases and source tarballs.
Note that the source tarball contains the complete distribution of XtreemFS, which
also includes server and tools. Currently, binary distributions of the client are only
available for Linux and Windows.

4.1.1 Prerequisites

To install XtreemFS on Linux, please make sure that FUSE 2.6 or newer, boost 1.35
or newer, openSSL 0.9.8 or newer, libattr and a Linux 2.6 kernel are available on
your system. For an optimal performance, we suggest to use FUSE 2.8 with a kernel
version 2.6.26 or newer.

4.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva) you can install the
package with

$> rpm -i xtreemfs-client-1.3.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-client-1.3.x.deb

For Windows, please use the .msi installer that will guide you through the installation
process. For Mac OS X, we provide packaged client with installer.

33

34 CHAPTER 4. XTREEMFS CLIENT

4.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make client

This will build the XtreemFS client and non-Java-based tools. Note that the follow-
ing third-party packages are required on Linux:

• RPM-based distros:

cmake >= 2.6
gcc-c++ >= 4.1
fuse >= 2.6
fuse-devel >= 2.6
boost-devel >= 1.35
openssl-devel >= 0.9.8
libattr-devel >= 2

• DEB-based distros:

cmake (>= 2.6)
build-essential (>=11)
libfuse-dev (>= 2.6)
libssl-dev (>= 0.9)
libattr-dev (>= 2)
libboost-system1.35-dev or later
libboost-thread1.35-dev or later
libboost-program-options1.35-dev or later
libboost-regex1.35-dev or later

When done, execute

$> sudo make install-client

to complete the installation of XtreemFS.

4.2 Volume Management

Like many other file systems, XtreemFS supports the concept of volumes. A volume
can be seen as a container for files and directories with its own policy settings, e.g. for
access control and replication. Before being able to access an XtreemFS installation,
at least one volume needs to be set up. This section describes how to deal with
volumes in XtreemFS.

4.2. VOLUME MANAGEMENT 35

4.2.1 Creating Volumes

Volumes can be created with the mkfs.xtreemfs command line utility. Please see
man mkfs.xtreemfs for a full list of options and usage.

When creating a volume, it is recommended to specify the authorization policy (see
Sec. 7.2). If not specified, POSIX permissions/ACLs will be chosen by default.
Unlike most other policies, authorization policies cannot be changed afterwards.

In addition, it is recommended to set a default striping policy (see Sec. 7.4). If no
per-file or per-directory default striping policy overrides the volume’s default striping
policy, the volume’s policy is assigned to all newly created files. If no volume policy
is explicitly defined when creating a volume, a RAID0 policy with a stripe size of
128kB and a width of 1 will be used as the default policy.

A volume with a POSIX permission model, a stripe size of 256kB and a stripe width
of 1 (i.e. all stripes will reside on the same OSD) can be created as follows:

$> mkfs.xtreemfs -a POSIX -p RAID0 -s 256 -w 1 \
my-mrc-host.com:32636/myVolume

Creating a volume may require privileged access, which depends on whether an ad-
ministrator password is required by the MRC. To pass an administrator password,
add ––admin_password <password> to the mkfs.xtreemfs command.

For a complete list of parameters, please refer to the mkfs.xtreemfs man page.

4.2.2 Deleting Volumes

Volumes can be deleted with the rmfs.xtreemfs tool. Deleting a volume implies
that any data, i.e. all files and directories on the volume are irrecoverably lost! Please
see man rmfs.xtreemfs for a full list of options and usage. Please also note that
rmfs.xtreemfs does not dispose of file contents on the OSD. To reclaim storage
space occupied by the volume, it is therefore necessary to either remove all files from
the volume before deleting it, or to run the cleanup tool (see Section 5.2.2).

The volume myVolume residing on the MRC my-mrc-host.com:32636 can e.g. be
deleted as follows:

$> rmfs.xtreemfs my-mrc-host.com:32636/myVolume

Volume deletion is restricted to volume owners and privileged users. Similar to
mkfs.xtreemfs, an administrator password can be specified if required.

4.2.3 Listing all Volumes

A list of all volumes can be displayed with the lsfs.xtreemfs tool. All volumes
hosted by the MRC my-mrc-host.com:32636 can be listed as follows:

$> lsfs.xtreemfs my-mrc-host.com:32636

36 CHAPTER 4. XTREEMFS CLIENT

4.3 Accessing Volumes

Once a volume has been created, it needs to be mounted in order to be accessed.

4.3.1 Mounting and Un-mounting

Before mounting XtreemFS volumes on a Linux machine, please ensure that the
FUSE kernel module is loaded. Please check your distribution’s manual to see if
users must be in a special group (e.g. trusted in openSuSE) to be allowed to mount
FUSE file systems.

$> su
Password:
#> modprobe fuse
#> exit

Volumes are mounted with the mount.xtreemfs command:

$> mount.xtreemfs remote.dir.machine/myVolume /xtreemfs

remote.dir.machine describes the host with the Directory Service at which the
volume is registered; myVolume is the name of the volume to be mounted. /xtreemfs
is the directory on the local file system to which the XtreemFS volume will be
mounted. For more options, please refer to man mount.xtreemfs.

Please be aware that the Directory Service URL needs to be provided when mount-
ing a volume, while MRC URLs are used to create volumes.

When mounting a volume, the client will immediately go into background and won’t
display any error messages. Use the -f option to prevent the mount process from go-
ing into background and get all error messages printed to the console. Alternatively,
you can use the xtfsutil to print the last 20 errors for a mounted volume.

To check that a volume is mounted, use the mount command. It outputs a list of all
mounts in the system. XtreemFS volumes are listed as type fuse:

xtreemfs@localhost:32638/xtreemfs on /xtreemfs type fuse (...)

Volumes are unmounted with the umount.xtreemfs tool:

$> umount.xtreemfs /xtreemfs

On Mac OS X, volumes are unmounted with the regular umount command:

$> umount /xtreemfs

4.4. TROUBLESHOOTING 37

4.3.2 Mount Options

Access to a FUSE mount is usually restricted to the user who mounted the volume.
To allow the root user or any other user on the system to access the mounted vol-
ume, the FUSE options -o allow_root and -o allow_other can be used with
xtfs_mount. They are, however, mutually exclusive. In order to use these options,
the system administrator must create a FUSE configuration file /etc/fuse.conf
and add a line user_allow_other.

By default, the local system cache on the client machine will be used to speed up
read access to XtreemFS. In particular, using the cache as a local buffer is necessary
to support the mmap system call, which - amongst others - is required to execute ap-
plications on Linux. On the other hand, using buffered I/O may adversely affect
throughput when writing large files, as FUSE ≤ 2.7 splits up large writes into mul-
tiple individual 4k (page size) writes. In addition, it limits the consistency model
of client caches to “close-to-open”, which is similar to the model provided by NFS.
Buffered I/O can be switched off by adding the -o direct_io parameter. The pa-
rameter effects that all read and write operations are directed to their OSDs instead
of being served from local caches.

4.4 Troubleshooting

Different kinds of problems may occur when trying to create, mount or access
files in a volume. If no log file was specified, the client will create a logfile called
mount.xtreemfs.log in the current working directory. This logfile is only created
in case of an error message. In case no useful error message is printed on the console
or in the logfile, it may help to enable client-side log output. This can be done as
follows:

$> mount.xtreemfs -f -d DEBUG remote.dir.machine/myVolume /xtreemfs

The following list contains the most common problems and their solutions.

Problem A volume cannot be created or mounted.
Solution Please check your firewall settings on the server side. Are all ports ac-

cessible? The default ports are 32636 (MRC), 32638 (DIR), and 32640
(OSD).
In case the XtreemFS installation has been set up behind a NAT, it
is possible that services registered their NAT-internal network inter-
faces at the DIR. In this case, clients cannot properly resolve server
addresses, even if port forwarding is enabled. Please check the Ad-
dress Mappings section on the DIR status page to ensure that exter-
nally reachable network interfaces have been registered for the your
servers’ UUIDs. If this is not the case, it is possible to explicitly spec-
ify the network interfaces to register via the hostname property (see
Sec. 3.2.5).

38 CHAPTER 4. XTREEMFS CLIENT

Problem An error occurs when trying to access a mounted volume.
Solution Please make sure that you have sufficient access rights to the vol-

ume root. Superusers and volume owners can change these rights via
chmod <mode> <mountpoint>. If you try to access a mount point
to which XtreemFS was mounted by a different user, please make
sure that the volume is mounted with xtfs_mount -o allow_other
....

Problem An I/O error occurs when trying to create new files.
Solution In general, you can check the contents of the client log file to see the

error which caused the I/O error. A common reason for this problem
is that no OSD could be assigned to the new file. Please check if
suitable OSDs are available for the volume. There are two alternative
ways to do this:

• Open the MRC status page. It can be accessed via
http://<MRC-host>:30636 in the default case. For each vol-
ume, a list of suitable OSDs is shown there.

• Execute getfattr -n xtreemfs.usable_osds
––only-values <mountpoint>.

There may be different reasons for missing suitable OSDs:

• One or more OSDs failed to start up. Please check the log files
and status pages of all OSDs to ensure that they are running.

• One or more OSDs failed to register or regularly report activity
at the DIR. Please check the DIR status page to ensure that all
OSDs are registered and active.

• There are no OSDs with a sufficient amount of free disk space.
Please check the OSD status page to obtain information about
free disk space.

Problem An I/O error occurs when trying to access an existing file.
Solution Please check whether all OSDs assigned to the file are running and

reachable. This can be done as follows:

1. Get the list of all OSDs for the file: getfattr -n
xtreemfs.locations ––only-values <file>.

2. Check whether the OSDs in (one of) all replicas in the list are
running and reachable, e.g. by opening the status pages or via
telnet <host> <port>.

Chapter 5

XtreemFS Tools

To make use of most of the advanced XtreemFS features, XtreemFS offers a variety
of tools. There are tools that support administrators with the maintenance of an
XtreemFS installation, as well as tools for controlling features like replication and
striping. An overview of the different tools with descriptions of how to use them are
provided in the following.

5.1 Installation

The user tools are built, packaged and installed together with the XtreemFS client.
For details on how to install the XtreemFS client, please refer to Section 4.1.
To install XtreemFS admin tools, you can choose from two different installation
sources: you can download one of the pre-packaged releases that we create for most
Linux distributions or you can install directly from the source tarball.
Note that the source tarball contains the complete distribution of XtreemFS, which
also includes client and server. Currently, binary distributions of the admin tools
are only available for Linux.

5.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system. Some tools also require the attr/libattr package to be
installed.
When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

5.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva) you can install the
package with

$> rpm -i xtreemfs-tools-1.3.x.rpm xtreemfs-backend-1.3.x.rpm

39

40 CHAPTER 5. XTREEMFS TOOLS

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-tools-1.3.x.deb xtreemfs-backend-1.3.x.deb

To install the tools, the following package is required: jre ≥ 1.6.0 for RPM-based
releases, java6-runtime for Debian-based releases. If you already have a different
distribution of Java6 on your system, you can alternatively install the XtreemFS
tools packages as follows:

$> rpm -i --nodeps xtreemfs-tools-1.3.x.rpm \
xtreemfs-backend-1.3.x.rpm

on RPM-based distributions,

$> dpkg -i --ignore-depends java6-runtime \
xtreemfs-tools-1.3.x.deb xtreemfs-backend-1.3.x.deb

on Debian-based distributions.

To ensure that your local Java6 installation is used, is necessary to set the JAVA_HOME
environment variable to your Java6 installation directory, e.g.

$> export JAVA_HOME=/usr/java6

All XtreemFS tools will be installed to /usr/bin.

5.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make server

When done, execute

$> sudo make install-tools

to complete the installation. Note that this will also install the XtreemFS client and
servers.

5.2 Admin Tools

This section describes the tools that support administrators in maintaining an XtreemFS
installation.

5.2. ADMIN TOOLS 41

5.2.1 MRC Database Conversion

The database format in which the MRC stores its file system metadata on disk may
change with future XtreemFS versions, even though we attempt to keep it as stable
as possible. To ensure that XtreemFS server components may be updated without
having to create and restore a backup of the entire installation, it is possible to con-
vert an MRC database to a newer version by means of a version-independent XML
representation.

This is done as follows:

1. Create an XML representation of the old database with the old MRC version.

2. Update the MRC to the new version.

3. Restore the database from the XML representation.

xtfs_mrcdbtool is a tool that is capable of doing this. It can create an XML dump
of an MRC database as follows:

$> xtfs_mrcdbtool -mrc pbrpc://my-mrc-host.com:32636 \
dump /tmp/dump.xml

A file dump.xml containing the entire database content of the MRC running on
my-mrc-host.com:32636 is written to /tmp/dump.xml. For security reasons, the
dump file will be created locally on the MRC host. To make sure that sufficient write
permissions are granted to create the dump file, we therefore recommend to specify
an absolute dump file path like /tmp/dump.xml.

A database dump can be restored from a dump file as follows:

$> xtfs_mrcdbtool -mrc pbrpc://my-mrc-host.com:32636 \
restore /tmp/dump.xml

This will restore the database stored in /tmp/dump.xml at my-mrc-host.com. Note
that for safety reasons, it is only possible to restore a database from a dump if the
database of the running MRC does not have any content. To restore an MRC
database, it is thus necessary to delete all MRC database files before starting the
MRC.

Please be aware that dumping and restoring databases may both require privileged
access rights if the MRC requires an administrator password. The password can be
specified via ––admin_password; for further details, check the xtfs_mrcdbtool
man page.

5.2.2 Scrubbing and Cleanup

In real-world environments, errors occur in the course of creating, modifying or
deleting files. This can cause corruptions of file data or metadata. Such things happen
e.g. if the client is suddenly terminated, or loses connection with a server component.
There are several such scenarios: if a client writes to a file but does not report file

42 CHAPTER 5. XTREEMFS TOOLS

sizes received from the OSD back to the MRC, inconsistencies between the file size
stored in the MRC and the actual size of all objects in the OSD will occur. If a client
deletes a file from the directory tree, but cannot reach the OSD, orphaned objects
will remain on the OSD. If an OSD is terminated during an ongoing write operation,
file content will become corrupted.

In order to detect and, if possible, resolve such inconsistencies, tools for scrubbing
and OSD cleanup exist. To check the consistency of file sizes and checksums, the
following command can be executed:

$> xtfs_scrub -dir pbrpc://my-dir-host.com:32638 myVolume

This will scrub each file in the volume myVolume, i.e. check file size consistency
and set the correct file size on the MRC, if necessary, and check whether an invalid
checksum in the OSD indicates a corrupted file content. The -dir argument speci-
fies the directory service that will be used to resolve service UUIDs. Please see man
xtfs_scrub for further details.

A second tool scans an OSD for orphaned objects, which can be used as follows:

$> xtfs_cleanup -dir pbrpc://localhost:32638 \
uuid:u2i3-28isu2-iwuv29-isjd83

The given UUID identifies the OSD to clean and will be resolved by the directory
service defined by the -dir option (localhost:32638 in this example). The process
will be started and can be stopped by setting the option -stop. To watch the cleanup
progress use option -i for the interactive mode. For further information see man
xtfs_cleanup.

5.2.3 Setting the Service Status

The service’s status field is shown in the service status page as static.status. The
status can be 0 (online), 1 (marked for removal) and 2 (dead/removed). Status 0
(online) is the regular status for all services, even if they are temporarily offline.
Status 2 (dead/removed) marks an OSD as permanently failed and the scrubber will
removed replicas and files from these OSDs. Status 1 (marked for removal) is for
future use.

The status can be set with the xtfs_chstatus tool:

$> xtfs_chstatus -dir pbrpc://localhost:32638 \
u2i3-28isu2-iwuv29-isjd83 online

This command sets the status of the service with the UUID u2i3-28isu2-iwuv29-isjd83
to online.

5.2. ADMIN TOOLS 43

5.2.4 Snapshots

XtreemFS is capable of taking file system snapshots. A snapshot captures an instan-
taneous image of all files and directories in a volume, which can later be accessed in
a read-only manner.
Snapshots can be created, listed and deleted with the xtfs_snap tool. A mounted
volume is necessary to run the tool; information on how to mount volumes can be
found in Section 4.3.
As snapshots cause an additional storage and I/O overhead since they require copy-
on-write versioning of files across the OSDs, it is first necessary to enable them on a
volume. Snapshots can be enabled as follows:

$> xtfs_snap --enable -d /path/to/mounted/volume

Once snapshots have been enabled, a snapshot named mySnapshot can be taken as
follows:

$> xtfs_snap -c -r -d /path/to/mounted/volume/subdirectory \
mySnapshot

The optional -r parameter enables a recursive capturing that includes all subdirecto-
ries beneath the XtreemFS directory subdirectory.
A list of all snapshots that exist on the volume can be displayed as follows:

$> xtfs_snap -l -d /path/to/mounted/volume
mySnapshot

Snapshots are exposed as read-only volumes. To access a snapshot, it is necessary
to mount it. The volume name is composed of the original volume name and the
snapshot name, separated by an @ character. Mounting a snapshot works as follows:

$> mount.xtreemfs localhost/volume@mySnapshot \
/path/to/mounted/volume2

A mounted volume snapshot can be browsed normally, and all files can be read as on
the original volume. However, any attempt to write data on a snapshot will result in
an EPERM error.
A snapshot mySnapshot that is no longer needed can be removed as follows:

$> xtfs_snap -x -d /path/to/mounted/volume mySnapshot

Please be aware that removing a snapshot does not automatically reclaim storage
space from all prior versions. To dispose of obsolete and redundant versions on a spe-
cific OSD, it is necessary to perform a version cleanup run with the xtfs_cleanup
tool:

$> xtfs_cleanup -dir localhost:32638 -v \
uuid:8bca70da-c963-43c7-b30b-d0d605d39fa7

44 CHAPTER 5. XTREEMFS TOOLS

Note: A snapshot only captures a file in its current state if it is closed. Files that
are open when taking a snapshot are captured in the last state in which they were
before they were opened. Since files are implicitly closed on an OSD through a
timeout rather than an explicit close call, it may happen that files are not included
in a snapshot despite having been closed at application level before the snapshot was
taken. To make sure a change to a specific file is included in a subsequent snapshot,
it is necessary to wait for the close timeout on the OSD before taking the snapshot,
which by default is set to 60 seconds.

5.3 User Tools

Since release 1.3, all user tools have been replaced by the xtfsutil tool. xtfsutil
displays XtreemFS specific file and directory information, manages file replicas and
volume policies.

5.3.1 xtfsutil for Files

When called without any option xtfsutil prints the XtreemFS specific informa-
tion for a volume, directory, softlink or file.

$> cd /xtreemfs
$> echo ’Hello World’ > test.txt
$> xtfsutil test.txt

will produce output similar to the following:

Path (on volume) /test.txt
XtreemFS file Id 1089e4fb-9eb9-46ea-8acf-91d10c2170e3:2
XtreemFS URL pbrpc://localhost:32638/xtreemfs/test.txt
Owner user
Group users
Type file
Replication policy WqRq
XLoc version 0
Replicas:
Replica 1

Striping policy STRIPING_POLICY_RAID0 / 1 / 128kB
Replication Flags partial
OSD 1 test-osd1/127.0.0.1:32641

Replica 2
Striping policy STRIPING_POLICY_RAID0 / 1 / 128kB
Replication Flags partial
OSD 1 test-osd0/127.0.0.1:32640

Replica 3
Striping policy STRIPING_POLICY_RAID0 / 1 / 128kB
Replication Flags partial
OSD 1 test-osd2/127.0.0.1:32642

5.3. USER TOOLS 45

The fileID is the unique identifier within XtreemFS, e.g. used by the OSD to identify
the file’s objects. The owner/group fields are shown as reported by the MRC, you
may see other names on your local system if there is no mapping (i.e. the file owner
does not exist as a user on your local machine). The XtreemFS URL shows you on
which MRC the volume is hosted and the name of the volume. This file has three
replicas and is replicated with the WqRq policy (majority voting).

Changing the Replication Policy

The replication policy defines how a file is replicated. The policy can only be
changed for a file that has no replicas. If you wish to change the policy for a replicated
files, you have to remove all replicas first.
To change the replication policy, execute xtfsutil with the following options:

$> xtfsutil --set-replication-policy ronly /xtreemfs/test.txt

The following values can be passed to --set-replication-policy:

none File is not replicated.

ronly File is read-only replicated, the file cannot be modified.

WqRq File is read-write replicated and can be modified. Updates are sent to a ma-
jority, replicas can fail.

WaRa Like WqRq but updates are sent to all replicas and no replica may fail.

Adding and Removing Replicas

Replicas can be added for files that have a replication policy defined, i.e. not none.
When adding a replica, you need to specify on which OSD to create the new replica.
Alternatively, you can use auto instead of an OSD UUID. With auto set, the
xtfsutil will automatically select an OSD.
To add a replica execute:

$> xtfsutil --add-replica auto /xtreemfs/test.txt

For read-only replicated files, replicas are partial by default. To create a full replica,
you can use the --full flag when adding a replica. For read-write replicated files, all
replicas are equal and there is no further options.
In case you want to select an OSD for a new replica manually, you can retrieve a list
of up to 10 OSDs for a file. The MRC automatically filters and sorts the list of OSDs
depending on the policies set for a volume. In addition, the MRC also excludes all
OSDs that already have a replica of that file. To retrieve this list execute:

$> xtfsutil --list-osds /xtreemfs/test.txt
OSDs suitable for new replicas:
test-osd1
test-osd2

46 CHAPTER 5. XTREEMFS TOOLS

To remove a replica, pass the OSD’s UUID to xtfsutil:

$> xtfsutil --delete-replica test-osd1 /xtreemfs/test.txt

5.3.2 xtfsutil for Volumes

To display the volume policies and settings, execute xtfsutil on the mountpoint
without any options.

$> xtfsutil /xtreemfs

will produce output similar to the following:

Path (on volume) /
XtreemFS file Id 1089e4fb-9eb9-46ea-8acf-91d10c2170e3:1
XtreemFS URL pbrpc://localhost:32638/replicated
Owner user
Group users
Type volume
Free/Used Space 24 GB / 6 bytes
Num. Files/Dirs 1 / 1
Access Control p. 2
OSD Selection p. 1000,3002
Replica Selection p. default
Default Striping p. STRIPING_POLICY_RAID0 / 1 / 128kB
Default Repl. p. WqRq with 3 replicas

Changing the Default Striping Policies

Currently, it is not possible to change the striping policy of an existing file, as this
would require rearrangements and transfers of data between OSDs. However, it is
possible to define individual striping policies for files that will be created in the fu-
ture. This can be done by changing the default striping policy of the parent directory
or volume.

The striping policy can be changed with xtfsutil as follows:

$> xtfsutil --set-dsp -p RAID0 -w 4 -s 256 /xtreemfs

This will cause a RAID0 striping policy with 256kB stripe size and four OSDs to be
assigned to all newly created files in /xtreemfs.

When creating a new file, XtreemFS will first check whether a default striping policy
has been assigned to the file’s parent directory. If this is not the case, the default
striping policy for the volume will be used as the striping policy for the new file.
Changing a volume’s or directory’s default striping policy requires superuser access
rights, or ownership of the volume or directory.

5.3. USER TOOLS 47

Changing the Default Replication Policy

The Default Replication Policy defines how new files on a volume are replicated.
This policy can be set on the volume and is valid for all sub-directories. It affects
only new files and doesn’t modify the replication settings for existing files.

The replication policy can be changed as follows. In this example, all files will have
three replicas with WqRq mode.

$> xtfsutil --set-drp --replication-policy WqRq \
--replication-factor 3 /xtreemfs

The following values can be passed to --replication-policy:

none New files are not replicated.

ronly Files are initially created without replicas and can be modified until they are
closed. On close, the file is set to read-only and the replicas are created. Repli-
cas are partial by default, full replicas will be created if the --full flag is set.

WqRq, WaRa New files are read-write replicated and can be modified.

5.3.3 Changing OSD and Replica Selection Policies

When creating a new file, OSDs have to be selected on which to store the file content.
Likewise, OSDs have to be selected for a newly added replica, as well as the order
in which replicas are contacted when accessing a file. How these selections are done
can be controlled by the user.

OSD and replica selection policies can only be set for the entire volume. Further
details about the policies are described in Sec. 7.3.

The policies are set and modified with the xtfsutil tool on the volume (mount
point). When called without any options, xtfsutil will also show the policies
currently set for the volume. A policy that controls the selection of a replica is set as
follows:

$> xtfsutil --set-rsp dcmap /xtreemfs

This will change the current replica selection policy to a policy based on a data center
map.

Note that by default, there is no replica selection policy, which means that the client
will attempt to access replicas in their natural order, i.e. the order in which the
replicas have been created.

Similar to replica selection policies, OSD selection policies are set and retrieved:

$> xtfsutil --set-osp dcmap /xtreemfs

sets a data center map-based OSD selection policy, which is invoked each time a new
file or replica is created. The following predefined policies exist (see Sec. 7.3 and man
xtfsutil for details):

48 CHAPTER 5. XTREEMFS TOOLS

default The default OSD selection policy selects a random subset of OSDs that
are responsive and have more than 2GB of free disk space.

fqdn Selects OSDs based on the size of the post-fix match of the fully qualified
domain names and on the free space.

dcmap Selects OSDs based on the distance defined in the datacenter map and on the
free space.

vivaldi Selects OSDs based on the distance of the Vivaldi coordinates between
client and OSD and on the free space.

In addition, custom policies can be set by passing a list of basic policy IDs to be
successively applied instead of a predefined policy name.

5.3.4 Setting and Listing Policy Attributes

OSD and replica selection policy behavior can be further specified by means of pol-
icy attributes. For a list of predefined attributes, see Section 7.3. Policy attributes
can be set as follows:

$> xtfsutil --set-pattr domains --value "*.xtreemfs.org bla.com" \
/xtreemfs

A list of all policy attributes that have been set can be shown as follows:

$> xtfsutil --list-pattrs /xtreemfs

5.3.5 Modifying Access Control Lists

In some cases, it may be necessary to enforce access control on a file or directory at
a finer granularity than expressible with simple “rwx”-like access rights. XtreemFS
supports Access Control Lists (ACLs) to set individual access rights for users and
groups.

An ACL entry for the user someone with the value rx (“read or execute”) can be
added as follows:

$> xtfsutil --set-acl u:someone:rx /xtreemfs

An existing entry can be removed as follows:

$> xtfsutil --del-acl u:someone /xtreemfs

Please be aware that when files or directories are accessed, the actual evaluation of
ACL entries depends upon the effective authorization policy on the volume (see
Section 7.2). With a POSIX authorization policy, ACL entries will be evaluated as
described at http://www.suse.de/˜agruen/acl/linux-acls/online.

http://www.suse.de/~agruen/acl/linux-acls/online

5.4. VIVALDI 49

5.4 Vivaldi

Attention: Vivaldi is currently not included in Release 1.3.0 but will become avail-
able in one of the next minor releases. Client machines that want to use vivaldi
network coordinates for replica and OSD selection must calculate their own coordi-
nates relative to the OSDs. This is done by the xtfs_vivaldi utility which must
be started on each client machine. Ideally, this process is started during boot with
the xtreemfs-vivaldi init.d scripts provided. The utility must be started with the
directory service address and the path to a file in which the coordinates are stored.

$> xtfs_vivaldi remote.dir.machine \
/var/lib/xtreemfs/vivaldi_coordinates

If started with the init.d script, the utility will get the DIR address from
/etc/xos/xtreemfs/default_dir and will store the coordinates in
/var/lib/xtreemfs/vivaldi_coordinates.

The coordinate file must be passed as an argument when mounting a volume:

$> mount.xtreemfs --vivaldi-coordinates-file-path \
/var/lib/xtreemfs/vivaldi_coordinates \
remote.dir.machine/myVolume /xtreemfs

Finally, the vivaldi replica and OSD selection policies must be set at the MRC for
the volume(s). See Sec. 5.3.3 for details.

5.5 Test Tools

XtreemFS provides two tools to simplify testing. xstartserv can be used to start
and stop XtreemFS servers manually. xtestenv automatically sets-up an entire test
environment with servers and mounted clients. In addition, xtestenv can be used
to execute the automatic integration tests.

50 CHAPTER 5. XTREEMFS TOOLS

Chapter 6

Replication

XtreemFS offers replication of all data. On the one hand, the Directory Service
(DIR) and the Metadata Catalog (MRC) are replicated at database level. On the
other hand, files are replicated on the OSDs with read/write or with read-only repli-
cation. In this chapter, we describe how these replication mechanisms work, their
requirements and potential use-cases.

6.1 Read/Write File Replication

File that are replicated with read/write replication have the same semantics as non-
replicated files. That means that all operations can be executed on those files and that
data is kept consistent across replicas. Applications and users won’t see a difference
between read/write replicated and regular files.

6.1.1 Technical Details

Internally, the read/write replication is implemented using the primary/backup ap-
proach with leases. When a file is opened, all OSDs that have a replica “talk” to each
other to decide which replica becomes the primary. In XtreemFS we use leases for
the primary election, this means that an OSD will become primary for some time. If
it fails, the lease times out and another OSD can become primary. Once a replica has
acquired the lease to become primary, it checks with the other replicas to ensure all
replicas are in a consistent state. After this so called replica reset phase, the primary
processes client operations. Reads can be executed locally on the primary. However,
operations that modify data such as write and truncate, are executed on the primary
which passes these updates on to the other replicas (backups).

The replication of files adds significant communication overhead to keep replicas in
sync. When a file is opened, the OSD which the client contacts requires at least
three message round-trips to acquires the lease and to execute the replica reset. Once
a primary was elected, read operations can be executed locally without any commu-
nication. Truncate and write require a single round-trip between the primary and
the backup OSDs.

51

52 CHAPTER 6. REPLICATION

Depending on the selected replication policy, the read/write replication can tolerate
some replica failures. The WqRq policy employs majority voting and can tolerate
replica failures as long as a majority of replicas is available. This is the most fault-
tolerant strategy in XtreemFS. However, it guarantees only that data is stored on
a majority of the replicas. If you lose more replicas permanently, data might be
lost. The WaRa policy writes updates to all replicas which yields higher data safety.
However, this policy cannot tolerate replica failures.

6.1.2 Limitations

Due to the communication overhead, the read/write replication should only be used
for up to ten replicas. If you need more replicas or if you need replicas for caching,
you should consider the read-only replication.

6.1.3 Setup

To enable read/write replication, it is necessary to specify a respective replication
policy. Replication policies that enable read/write replication are WqRq and WaRa.

A replication policy can either be specified for an existing file or as a default policy
for the entire volume. In the former case, replicas need to be added manually. In the
latter case, a default replication factor needs to be specified that defines the number
of replicas that are initially created. Please be aware that a default replication policy
only affects newly created files, i.e. does not automatically add replicas to existing
files!

For details on how to define replication policies, please refer to Section 5.3.1 and
5.3.2.

6.2 Read-Only File Replication

The read-only is designed for use-cases where you have many replicas that are not
modified. Since files cannot be changed, the replicas don’t need to be coordinated.
Therefore, this replication mode can handle as many replicas as you like, e.g. to
create copies of files close to consumers. One use-case for the read-only replication
is to build a content-distribution network (CDN) like infrastructure.

Read-only replicas are either full or partial. Full replicas immediately copy the file
data from other replicas when they are created. XtreemFS uses a rarest-first strategy
(similar to BitTorrent) to increase the replication factor as quickly as possible. In
contrast, partial replicas are initially empty and fetch the file data (objects) on de-
mand when requested by a client. Partial replicas also pre-fetch a small number of
objects to reduce latency for further client reads.

6.2.1 Limitations

Files that are read-only replicated can only be opened in read-only mode and can-
not be modified. To allow existing applications to take advantage of the read-only
replication without modifications, XtreemFS offers “replicate-on-close”. When the

6.3. MRC AND DIR REPLICATION 53

default replication policy for a volume is set to “ronly”, files can be opened and mod-
ified like regular files until they are closed. Once a file is closed, it is set to read-only
and is replicated according to the replication factor set for the volume. This mode
should, however, not be used for data safety as there are no guarantees that all repli-
cas were created successfully when the close() operation returns. For data safety,
please use read/write replication.

6.2.2 Setup

Similar as with read/write replication, enabling read-only replication requires a read-
only replication policy to be set. The respective policy name is ronly. It can either
be specified for an existing file or as a default policy for the entire volume. For details
on how to define replication policies, please refer to Section 5.3.1 and 5.3.2.

6.3 MRC and DIR Replication

Aside from file replication across OSDs, XtreemFS also supports MRC and DIR
replication to increase data safety. MRC replication covers all file system metadata,
whereas DIR replication covers configuration information of services as well as vol-
umes.

6.3.1 Technical Details

DIR and MRC replication rely on the same principle as read-write replication of files.
A primary replica, which is distinguished by means of a lease, accepts all updates and
disseminates these to all backup replicas in the same order. When the primary fails,
the lease will eventually expire and one of the former backup replicas can become
primary. Unlike file replication, which may involve a different set of OSDs for each
file, an MRC or DIR replicates its entire database.

6.3.2 Setup

To enable database replication across a set of DIR or MRC instances, it is necessary
to enable replication and configure its parameters. This needs to be done prior to
starting up the services. The basic steps are the following:

• Enable the replication plug-in on all replicated MRC/DIR instances

• Configure replication parameters across all instances

• Start up all replicated MRC/DIR instances

Enabling and Configuring MRC Replication

A replicated MRC consists of at least two individual server instances. Note that you
will need three or more instances to be able to transparently recover from failures,
as a majority of replicas always needs to be available to make progress.

54 CHAPTER 6. REPLICATION

To configure multiple MRC instances as replicas of each other, it is necessary to en-
able and configure the replication plug-in across these instances. This is done by set-
ting the property babudb.plugin.0 in the configuration file of each MRC instance,
such that it points to the plug-in’s configuration file. If the xtreemfs-server pack-
age has been installed, a default configuration file for the replication plug-in can be
found at /etc/xos/xtreemfs/server-repl-plugin/mrc.properties. In order
to activate the plug-in, open /etc/xos/xtreemfs/mrcconfig.properties with a
text editor and enter (or un-comment) the following line:

babudb.plugin.0 = /etc/xos/xtreemfs/server-repl-plugin/mrc.properties

Now, it is necessary to configure the replication plug-in. For this purpose, open
/etc/xos/xtreemfs/server-repl-plugin/mrc.properties with a text editor.
The configuration file will look as follows:

number of servers that at least have to be up to date
babudb.repl.sync.n = 2

...

participants of the replication including the local address
(may be missing, if localhost was defined explicitly)
babudb.repl.participant.0 = localhost
babudb.repl.participant.0.port = 35676
babudb.repl.participant.1 = somehost
babudb.repl.participant.1.port = 35676

...

babudb.repl.sync.n defines the number of servers that need to respond to an up-
date before acknowledging the update to the client. To ensure data safety in the
face of failures, it is necessary to set the property to a number that reflects at least a
majority of all replicas. The list of replicas can be extended arbitrarily by adding new
babudb.repl.participant.n as well as babudb.repl.participant.n.port prop-
erties, where n defines the replica number. Host names have to be resolvable, and
hosts have to be able to reach each other on the respective ports. Please also make
sure that replica lists are equivalent across all replicated MRC instances, i.e. each can
reach all other hosts in the replica set.
Note that it is necessary to explicitly enable SSL if server-to-server authentication
and encryption between replicas are required, regardless of whether an SSL-based
XtreemFS installation was set up. This is because BabuDB establishes its own con-
nection to exchange data with other replicated instances.
Please make sure that all replicated instances have consistent configurations before
starting them up, which includes replica lists, babudb.repl.sync.n parameters as
well as SSL settings if necessary.

Enabling and Configuring DIR Replication

DIR replication is enabled and configured in the exact same way as MRC replica-
tion. Change /etc/xos/xtreemfs/server-repl-plugin/dir.properties ac-

6.3. MRC AND DIR REPLICATION 55

cordingly to configure the plug-in. In contrast to MRC replication, however, the
XtreemFS client does not yet support an automatic fail-over if the DIR is not reach-
able.

Startup and Access

Once all service instances have been configured, they can be started up individually
as described in Section 3.3.1. From a user’s point of view, a replicated MRC behaves
exactly like a non-replicated MRC. Failures will be transparently handled by the
system and hidden from users to the best possible extent. For the service to remain
operable, however, at least a majority of all replicas in the list have to be reachable.

56 CHAPTER 6. REPLICATION

Chapter 7

Policies

Many facets of the behavior of XtreemFS can be configured by means of policies.
A policy defines how a certain task is performed, e.g. how the MRC selects a set of
OSDs for a new file, or how it distinguishes between an authorized and an unautho-
rized user when files are accessed. Policies are a means to customize an XtreemFS
installation.

XtreemFS supports a range of predefined policies for different tasks. Alternatively,
administrators may define their own policies in order to adapt XtreemFS to customer
demands. This chapter contains information about predefined policies, as well as
mechanisms to implement and plug in custom policies.

7.1 Authentication Policies

Any operation on a file system is executed on behalf of a user. The process of de-
termining the user bound to a request is generally referred to as user authentication.
To render user authentication customizable, the MRC allows administrators to spec-
ify an authentication policy by means of an Authentication Provider. Authentica-
tion Providers are modules that implement different methods for retrieving user and
group IDs from requests.

The following predefined authentication providers exist:

7.1.1 UNIX uid/gid - NullAuthProvider

The NullAuthProvider is the default Authentication Provider. It simply uses the
user ID and group IDs sent by the XtreemFS client. This means that the client is
trusted to send the correct user/group IDs.

The XtreemFS Client will send the user ID and group IDs of the process which
executed the file system operation, not of the user who mounted the volume!

The superuser is identified by the user ID root and is allowed to do everything on
the MRC. This behavior is similar to NFS with no_root_squash.

57

58 CHAPTER 7. POLICIES

7.1.2 Plain SSL Certificates - SimpleX509AuthProvider

XtreemFS supports two kinds of X.509 certificates which can be used by the client.
When mounted with a service/host certificate the XtreemFS client is regarded as a
trusted system component. The MRC will accept any user ID and groups sent by
the client and use them for authorization as with the NullAuthProvider. This setup
is useful for volumes which are used by multiple users.

The second certificate type are regular user certificates. The MRC will only accept
the user name and group from the certificate and ignore the user ID and groups sent
by the client. Such a setup is useful if users are allowed to mount XtreemFS from
untrusted machines.

Both certificates are regular X.509 certificates. Service and host certificates are identi-
fied by a Common Name (CN) starting with host/ or xtreemfs-service/, which
can easily be used in existing security infrastructures. All other certificates are as-
sumed to be user certificates.

If a user certificate is used, XtreemFS will take the Distinguished Name (DN) as the
user ID and the Organizational Unit (OU) as the group ID.

Superusers must have xtreemfs-admin as part of their Organizational Unit (OU).

7.2 Authorization Policies

Before executing an operation, a file system needs to check whether the user bound
to the operation is sufficiently authorized, i.e. is allowed to execute the operation.
User authorization is managed by means of access policies, which reside on the MRC.
Unlike authentication policies which are bound to an MRC, access policies can be
defined for each volume. This has to be done when the volume is created (see man
xtfs_mkvol). Various access policies can be used:

• Authorize All Policy (policy Id 1)
No authorization - everyone can do everything. This policy is useful if perfor-
mance of metadata operations matters more than security, since no evaluation
of access rights is needed.

• POSIX ACLs & Permissions (policy Id 2)
This access policy implements the traditional POSIX permissions commonly
used on Linux, as well as POSIX ACLs, an extension that provides for ac-
cess control at the granularity of single users and groups. POSIX permissions
should be used as the default, as it guarantees maximum compatibility with
other file systems.

• Volume ACLs (policy Id 3)
Volume ACLs provide an access control model similar to POSIX ACLs & Per-
missions, but only allow one ACL for the whole volume. This means that
there is no recursive evaluation of access rights which yields a higher perfor-
mance at the price of a very coarse-grained access control.

7.3. OSD AND REPLICA SELECTION POLICIES 59

7.3 OSD and Replica Selection Policies

When a new file is created or a replica is automatically added to a file, the MRC must
decide on a set of OSDs for storing the file content. To select the most suitable subset
among all known OSDs, OSD Selection Policies are used.

Replica selection is a related problem. When a client opens a file with more than
one replica, the MRC uses a replica selection policy to sort the list of replicas for
the client. Initially, a client will always attempt to access the first replica in the list
received from the MRC. If a replica is not available, it will automatically attempt to
access the next replica from the list, and restart with the first replica if all attempts
have failed. Replica selection policies can be used to sort the replica lists, e.g. to
ensure that clients first try to access replicas that are close to them.

Both OSD and replica selection policies share a common mechanism, in that they
consist of basic policies that can be arbitrarily combined. Input parameters of a basic
policy are a set of OSDs, the list of the current replica locations of the file, and the IP
address of the client on behalf of whom the policy was called. The output parameter
is a filtered and potentially sorted subset of OSDs. Since OSD lists returned by one
basic policy can be used as input parameters by another one, basic policies can be
chained to define more complex composite policies.

OSD and replica selection policies are assigned at volume granularity. For further
details on how to set such policies, please refer to Sec. 5.3.3.

7.3.1 Attributes

The behavior of basic policies can be further refined by means of policy attributes.
Policy attributes are extended attributes with a name starting with xtreemfs.policies.,
such as xtreemfs.policies.minFreeCapacity. Each time a policy attribute is
set, all policies will be notified about the change. How an attribute change affects the
policy behavior depends on the policy implementation.

7.3.2 Predefined Policies

Each basic policy can be assigned to one of the three different categories called filter-
ing, grouping and sorting. Filtering policies generate a sub-list from a list of OSDs. The
sub-list only contains those OSDs from the original list that have a certain property.
Grouping policies are used to select a subgroup from a given list of OSDs. They basi-
cally work in a similar manner as filtering policies, but unlike filtering policies, they
always return a list of a fixed size. Sorting policies generate and return a reordered list
from the input OSD list, without removing any OSDs.

The following predefined policies exist:

Filtering Policies

• Default OSD filter (policy ID 1000)
Removes OSDs from the list that are either dead or do not have sufficient
space. By default, the lower space limit for an OSD is 2GB, and the upper

60 CHAPTER 7. POLICIES

response time limit is 5 minutes.

Attributes:

– free_capacity_bytes: the lower space limit in bytes

– offline_time_secs: the upper response time limit in seconds

• FQDN-based filter (policy ID 1001)
Removes OSDs from the list that do not match any of the domains in a given
set. By default, the set of domains contains ’*’, which indicates that no do-
mains are removed.

Attributes:

– domains: a comma or space-separated list of domain names. The list
may include leading and trailing ’*’s, which will be regarded as wildcard
characters.

Grouping Policies

• Data center map-based grouping (policy ID 2000)
Removes all OSDs from the OSD set that have been used in the file’s replica
locations list already and selects the subset of OSDs that is closest to the client
and provides enough OSDs for the new replica in a single data center.

This policy uses a statically configured datacenter map that describes the dis-
tance between datacenters. It works only with IPv4 addresses at the moment.
Each datacenter has a list of matching IP addresses and networks which is used
to assign clients and OSDs to datacenters. Machines in the same datacenter
have a distance of 0.

This policy requires a datacenter map configuration file in
/etc/xos/xtreemfs/datacentermap on the MRC machine which is loaded
at MRC startup. This config file must contain the following parameters:

– datacenters=A,B,C
A comma separated list of datacenters. Datacenter names may only con-
tain a-z, A-Z, 0-9 and _.

– distance.A-B=100
For each pair of datacenters, the distance must be specified. As distances
are symmetric, it is sufficient to specify A to B.

– addresses.A=192.168.1.1,192.168.2.0/24
For each datacenter a list of matching IP addresses or networks must be
specified.

– max_cache_size=1000
Sets the size of the address cache that is used to lookup IP-to-datacenter
matches.

A sample datacenter map could look like this:

7.4. STRIPING POLICIES 61

datacenters=BERLIN,LONDON,NEW_YORK
distance.BERLIN-LONDON=10
distance.BERLIN-NEW_YORK=140
distance.LONDON-NEW_YORK=110
addresses.BERLIN=192.168.1.0/24
addresses.LONDON=192.168.2.0/24
addresses.NEW_YORK=192.168.3.0/24,192.168.100.0/25
max_cache_size=100

• FQDN-based grouping (policy ID 2001)
Removes all OSDs from the OSD set that have been used in the file’s replica
locations list already and selects the subset of OSDs that is closest to the client
and provides enough OSDs for the new replica in a single domain.

This policy uses domain names of clients and OSDs to determine the distance
between a client and an OSD, as well as if OSDs are in the same domain.

Sorting Policies

• Shuffling (policy ID 3000)
Shuffles the given list of OSDs.

• Data center map-based sorting (policy ID 3001)
Sorts the list of OSDs in ascending order of their distance to the client, accord-
ing to the data center map.

• Vivaldi network coordinates based sorting (policy ID 3003)
Sorts the list of OSDs in ascending order of their distance to the client, accord-
ing to the vivaldi coordinates of the client and OSDs. This policy requires the
clients to run the xtfs_vivaldi service.

• DNS based OSD Selection (policy ID 3002)
The FQDN of the client and all OSDs is compared and the maximum match
(from the end of the FQDN) is used to sort the OSDs. The policy sorts the
list of OSDs in descending order by the number of characters that match. This
policy can be used to automatically select OSDs which are close to the client,
if the length of the match between two DNS entries also indicate a low latency
between two machines.

7.4 Striping Policies

XtreemFS allows the content, i.e. the objects of a file to be distributed among several
storage devices (OSDs). This has the benefit that the file can be read or written in
parallel on multiple OSDs in order to increase throughput. To configure how files
are striped, XtreemFS supports striping policies.

A striping policy is a rule that defines how the objects are distributed on the avail-
able OSDs. Currently, XtreemFS implements only the RAID0 policy which simply
stores the objects in a round robin fashion on the OSDs. The RAID0 policy has two
parameters. The striping width defines to how many OSDs the file is distributed.

62 CHAPTER 7. POLICIES

If not enough OSDs are available when the file is created, the number of available
OSDs will be used instead; if it is 0, an I/O error is reported to the client. The stripe
size defines the size of each object.

Striping over several OSDs enhances the read and write throughput to a file. The
maximum throughput depends on the striping width. However, using RAID0 also
increases the probability of data loss. If a single OSD fails, parts of the file are no
longer accessible, which generally renders the entire file useless. Replication can
mitigate the problem but has all the restrictions described in Sec. ??.

7.5 Plug-in Policies

To further customize XtreemFS, the set of existing policies can be extended by defin-
ing plug-in policies. Such policies are Java classes that implement a predefined policy
interface. Currently, the following policy interfaces exist:

• org.xtreemfs.common.auth.AuthenticationProvider
interface for authentication policies

• org.xtreemfs.mrc.ac.FileAccessPolicy
interface for file access policies

• org.xtreemfs.mrc.osdselection.OSDSelectionPolicy
interface for OSD and replica selection policies

Note that there may only be one authentication provider per MRC, while file access
policies and OSD selection policies may differ for each volume. The former one
is identified by means of its class name (property authentication_provider, see
Sec. 3.2.3, 3.2.5), while volume-related policies are identified by ID numbers. It is
therefore necessary to add a member field

public static final long POLICY_ID = 4711;

to all such policy implementations, where 4711 represents the individual ID num-
ber. Administrators have to ensure that such ID numbers neither clash with ID
numbers of built-in policies (1-9), nor with ID numbers of other plug-in policies.
When creating a new volume, IDs of plug-in policies may be used just like built-in
policy IDs.

Plug-in policies have to be deployed in the directory specified by the MRC config-
uration property policy_dir. The property is optional; it may be omitted if no
plug-in policies are supposed to be used. An implementation of a plug-in policy can
be deployed as a Java source or class file located in a directory that corresponds to
the package of the class. Library dependencies may be added in the form of source,
class or JAR files. JAR files have to be deployed in the top-level directory. All source
files in all subdirectories are compiled at MRC start-up time and loaded on demand.

Appendix A

Support

Please visit the XtreemFS website at www.xtreemfs.org for links to the user mailing
list, bug tracker and further information.

63

http://www.xtreemfs.org

64 APPENDIX A. SUPPORT

Appendix B

Hadoop Integration

B.1 Introduction

XtreemFS is a distributed file system that can be used instead of HDFS the dis-
tributed file system made by the developers of Hadoop.

Therefore it replaces the NameNode and the DataNodes provided by HDFS in a
common Hadoop setup. A DIR is used instead of a NameNode, because it stores the
information about where the files and there metadata are located at the OSDs and
the MRC, like the NameNode does for DataNodes. These DataNodes hold the files
that have been stored at HDFS. On XtreemFS these files are split into metadata and
raw file data to be stored seperated at a MRC and OSDs.

Figure B.1: Hadoop cluster setup recommendation

The three master services JobTracker, DIR and MRC are required in a Hadoop con-
figuration. They can run alone or in arbitrary combinations on the same machine.
Hadoop can be used with an arbitrary number of Slaves. It is recommended to run a
TaskTracker together with an OSD on each Slave machine to improve performance,
but it is not mandatory.

65

66 APPENDIX B. HADOOP INTEGRATION

B.2 Quick Start

This section will help you to set up a simple Hadoop configuration with all necessary
services running on the same host.

Required software:

• XtreemFS servers (v 1.2.1) inlcuding XtreemFS.jar and yidl.jar (www.XtreemFS.org)

• HadoopClient.jar (www.XtreemFS.org)

• Hadoop (v 0.20.1) (hadoop.apache.org)

• JDK 1.6+ (Oracle/SUN)

Setup:

1. Install and start XtreemFS:
Follow the instructions given by the quick start guide for XtreemFS, avail-
able at Sec.1. Notice that the DIR is reachable at localhost:32638, beause this
information will be important later.

2. Download and extract Hadoop

3. Configure Hadoop to use XtreemFS instead of HDFS:

(a) After downloading and extracting Hadoop you first have to add XtreemFS,
the HadoopClient and yidl to its classpath. To do so edit the hadoop-
env.sh that can be found in the conf directory of Hadoop and add the
paths to XtreemFS.jar, yidl.jar and HadoopClient.jar separated by ’:’ to
the HADOOP_CLASSPATH. If you run a Linux-based OS these jar-
libraries are located at ’/usr/share/java/ ’.

(b) Now you have to specify some properties at the core-site.xml which also
has to be in the conf directory of Hadoop. If this file does not exist you
can safely create it.

<configuration>

<property>
<name>fs.xtreemfs.impl</name>
<value>org.xtreemfs.common.clients.hadoop.XtreemFSFileSystem</value>
<description>The FileSystem for xtreemfs: uris.</description>

</property>

<property>
<name>fs.default.name</name>
<value>xtreemfs://localhost:32638</value>
<description>Address for the DIR.</description>

</property>

<property>
<name>xtreemfs.volumeName</name>

http://www.XtreemFS.org
http://www.XtreemFS.org
http://hadoop.apache.org
http://java.sun.com

B.2. QUICK START 67

<value>volumeName</value>
<description>Name of the volume to use within XtreemFS.</description>

</property>

</configuration>

i. The first property is required to register the HadoopClient of XtreemFS
at Hadoop. Now you are able to access XtreemFS by the Hadoop
binary using the fs argument.

ii. The next property makes Hadoop use the DIR instead of a NameN-
ode, therefore address and port of the DIR has to be populated. In
this case the DIR is located at localhost:32638.

iii. The last property specifies the name of the volume to use within
XtreemFS. Make sure, that the volume (here named volumeName)
does exist. If the volume is not available Hadoop will not be able to
use XtreemFS!

Hint: If you want to provide userrights to your Hadoop installation ac-
cording to the POSIX file-access-policy, you have to set the following
additional properties:

<property>
<name>xtreemfs.client.userid</name>
<value>hadoopUserID</value>
<description>UserID to be used by Hadoop while accessing XtreemFS.</description>

</property>

<property>
<name>xtreemfs.client.groupid</name>
<value>hadoopGroupID</value>
<description>GroupID to be used by Hadoop while accessing XtreemFS.</description>

</property>

4. To provide the minimum JobTracker configuration for Hadoop you have also
to add the following property to the conf/mapred-site.xml:

<configuration>

<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
<description>Listening address for the JobTracker.</description>

</property>

</configuration>

Which specifies the address where the JobTracker will be running at.

5. Finally you are now able to start the JobTracker by running ’bin/hadoop job-
tracker’ from within the Hadoop root-directory and a TaskTracker by execut-
ing ’bin/hadoop tasktracker’.

68 APPENDIX B. HADOOP INTEGRATION

Congratulations! You successfully finished the quick start guide of the XtreemFS-
Hadoop integration and are now able to use your Hadoop applications like as is well
known or go on with the tutorials available on hadoop.apache.org.

http://hadoop.apache.org

Appendix C

Command Line Utilities

lsfs.xtreemfs (formerly xtfs_lsvol) Lists the volumes on an MRC.

mkfs.xtreemfs (formerly xtfs_mkvol) Creates a new volume on an MRC.

mount.xtreemfs (formerly xtfs_mount) The XtreemFS client which mounts an
XtreemFS volume locally on a machine.

rmfs.xtreemfs (formerly xtfs_rmvol) Deletes a volume.

umount.xtreemfs (formerly xtfs_umount) Un-mounts a mounted XtreemFS vol-
ume.

xstartserv Tool for manually starting/stopping XtreemFS servers, e.g. for testing
and development.

xtestenv Tool for automatic set-up of a test environment and for executing the au-
totests.

xtfsutil XtreemFS’s swiss army knife.

xtfs_cleanup Deletes orphaned objects on an OSD, restores orphaned files and re-
moves obsolete file versions.

xtfs_snap Creates, lists and deletes snapshots.

xtfs_mrcdbtool Dumps and restores an XML representation of the MRC database.

xtfs_scrub Examines all files in a volume for wrong file sizes and checksums and
corrects wrong file sizes in the MRC.

xtfs_vivaldi client service to calculate vivaldi coordinates.

69

Index

Access Policy, 58
Authorize All, 58
POSIX ACLs, 58
POSIX Permissions, 58
Volume ACLs, 58

allow_others option, 37
allow_root option, 37
Architecture, 4
Authentication, 4
Authentication Provider, 9, 57

NullAuthProvider, 57
SimpleX509AuthProvider, 58

Authorization, 4
Authorize All Access Policy, 58

CA
Certificate Authority, 11

Certificate, 4, 10
Certificate Authority, 11
Client, 5
Create Volume, 35
Credentials, 10

Delete Volume, 35
DIR, 4
Directory Service, 4

fileID, 45
FUSE, 5

Hadoop
Integration, 65

init.d, 29

Java Keystore, 11
JKS, 11

Metadata, 4
Metadata and Replica Catalog, 4
Metadata Server, 4
mkfs.xtreemfs, 35

Mount, 36
mount.xtreemfs, 36
Mounting, 5
MRC, 4

NullAuthProvider, 57

Object, 4
Object Storage Device, 4
Object-based File System, 4
OSD, 4
OSD Selection Policy, 59

PKCS#12, 10
Policy

Access Policy, 58
OSD Selection Policy, 59
Striping Policy, 4, 61

POSIX ACLs Access Policy, 58
POSIX Permissions Access Policy, 58

RAID0, 3, 61
rmfs.xtreemfs, 35

SimpleX509AuthProvider, 58
SSL, 4
Status Page, 29
Storage Server, 4
Stripe Size, 62
Striping, 61

Stripe Size, 62
Striping Policy, 4, 61
Striping Width, 61

umount.xtreemfs, 36
Unmount, 36
user_allow_other option, 37
UUID, 9

VFS, 5
Volume, 4, 5

Create, 35

70

INDEX 71

Delete, 35
Mount, 36
Un-mount, 36

Volume ACLs Access Policy, 58

X.509, 4, 10
xtfs_mkvol, 35
xtfs_mount, 36
xtfs_rmvol, 35
xtfs_umount, 36

	Quick Start
	About XtreemFS
	What is XtreemFS?
	What makes XtreemFS a distributed file system?
	What makes XtreemFS a replicated file system?

	Is XtreemFS suitable for me?
	XtreemFS is ...
	XtreemFS is not ...

	Core Features
	Distribution.
	Replication.
	Striping.
	Security.

	Architecture
	XtreemFS Components.

	XtreemFS Services
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Configuration
	A Word about UUIDs
	Automatic DIR Discovery
	Authentication
	Configuring SSL Support
	Converting PEM files to PKCS#12
	Importing trusted certificates from PEM into a JKS
	Sample Setup

	List of Configuration Options
	admin_password optional
	authentication_provider
	babudb.baseDir
	babudb.cfgFile optional
	babudb.checkInterval optional
	babudb.compression optional
	babudb.debug.level optional
	babudb.logDir
	babudb.maxLogfileSize optional
	babudb.pseudoSyncWait optional
	babudb.sync
	babudb.worker.maxQueueLength optional
	babudb.worker.numThreads optional
	capability_secret
	capability_timeout optional
	checksums.enabled
	checksums.algorithm
	debug.level optional
	debug.categories optional
	dir_service.host
	dir_service.port
	discover optional
	enable_local_FIFOs optional
	flease.dmax_ms optional
	flease.lease_timeout_ms optional
	flease.message_to_ms optional
	flease.retries optional
	geographic_coordinates optional
	hostname optional
	http_port
	ignore_capabilities optional
	listen.address optional
	listen.port
	local_clock_renewal
	monitoring.enabled
	monitoring.email.programm
	monitoring.email.receiver
	monitoring.email.sender
	monitoring.max_warnings
	monitoring.service_timeout_s
	no_atime
	object_dir
	osd_check_interval
	policy_dir optional
	remote_time_sync
	renew_to_caps optional
	report_free_space
	socket.send_buffer_size optional
	socket.recv_buffer_size optional
	ssl.enabled
	ssl.grid_ssl
	ssl.service_creds
	ssl.service_creds.container
	ssl.service_creds.pw
	ssl.trusted_certs
	ssl.trusted_certs.container
	ssl.trust_manager optional
	ssl.trusted_certs.pw
	startup.wait_for_dir
	storage_layout optional, experimental
	uuid

	Execution and Monitoring
	Starting and Stopping the XtreemFS services
	Web-based Status Page
	DIR Service Monitoring

	Troubleshooting

	XtreemFS Client
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Volume Management
	Creating Volumes
	Deleting Volumes
	Listing all Volumes

	Accessing Volumes
	Mounting and Un-mounting
	Mount Options

	Troubleshooting

	XtreemFS Tools
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Admin Tools
	MRC Database Conversion
	Scrubbing and Cleanup
	Setting the Service Status
	Snapshots

	User Tools
	xtfsutil for Files
	Changing the Replication Policy
	Adding and Removing Replicas

	xtfsutil for Volumes
	Changing the Default Striping Policies
	Changing the Default Replication Policy

	Changing OSD and Replica Selection Policies
	Setting and Listing Policy Attributes
	Modifying Access Control Lists

	Vivaldi
	Test Tools

	Replication
	Read/Write File Replication
	Technical Details
	Limitations
	Setup

	Read-Only File Replication
	Limitations
	Setup

	MRC and DIR Replication
	Technical Details
	Setup
	Enabling and Configuring MRC Replication
	Enabling and Configuring DIR Replication
	Startup and Access

	Policies
	Authentication Policies
	UNIX uid/gid - NullAuthProvider
	Plain SSL Certificates - SimpleX509AuthProvider

	Authorization Policies
	OSD and Replica Selection Policies
	Attributes
	Predefined Policies
	Filtering Policies
	Grouping Policies
	Sorting Policies

	Striping Policies
	Plug-in Policies

	Support
	Hadoop Integration
	Introduction
	Quick Start

	Command Line Utilities

