
The XtreemFS Installation and User Guide
Version 1.0

ii

XtreemFS is developed within the XtreemOS project. XtreemOS is a Linux-based
Grid operating system that transparently integrates Grid user, VO and resource man-
agement traditionally found in Grid Middleware. The XtreemOS project is funded
by the European Commission’s IST program under contract #FP6-033576.

XtreemFS is available from the XtreemFS website (www.XtreemFS.org).

This document is c© 2009 by Björn Kolbeck, Jan Stender, Minor Gordon, Felix
Hupfeld, Juan Gonzales. All rights reserved.

http://www.xtreemos.eu
http://www.XtreemFS.org

Contents

1 Quick Start vii

2 What is XtreemFS 1

2.1 About XtreemFS . 1

2.2 XtreemFS Architecture . 2

2.2.1 The Components of XtreemFS 2

2.2.2 Security . 3

2.3 Policies . 3

2.3.1 OSD Selection Policies . 3

2.3.2 Replica Selection Policies . 4

2.3.3 Striping Policies . 5

2.3.4 Authorization - Access Policies 5

2.3.5 Pluggable Policies . 6

3 XtreemFS Services 7

3.1 Installation . 7

3.1.1 Prerequisites . 7

3.1.2 Installing from Pre-Packaged Releases 7

3.1.3 Installing from Sources . 8

3.2 Configuration . 8

3.2.1 A Word about UUIDs . 8

3.2.2 Automatic DIR Service Discovery 8

3.2.3 Authentication . 9

UNIX uid/gid - NullAuthProvider 9

Plain SSL Certificates - SimpleX509AuthProvider 9

XtreemOS Certificates - XOSAuthProvider 9

3.2.4 List of Configuration Options 10

admin_password optional 10

iii

iv CONTENTS

authentication_provider 10
capability_secret . 10
checksums.enabled . 10
checksums.algorithm . 10
database.dir . 11
database.log . 11
debug.level optional . 11
debug.categories optional 12
dir_service.host . 12
dir_service.port . 12
discover optional . 13
geographic_coordinates 13
http_port . 13
listen.address optional 13
listen.port . 13
local_clock_renewal . 14
no_atime . 14
no_fsync optional . 14
object_dir . 14
osd_check_interval . 15
remote_time_sync . 15
report_free_space . 15
ssl.enabled . 15
ssl.service_creds . 15
ssl.service_creds.container 16
ssl.service_creds.pw 16
ssl.trusted_certs . 16
ssl.trusted_certs.container 16
ssl.trusted_certs.pw 16
uuid . 16

3.2.5 Configuring SSL Support 17
Converting PEM files to PKCS#12 17
Importing trusted certificates from PEM into a JKS 17
Sample Setup . 18

3.3 Management . 19
3.3.1 Starting and Stopping the XtreemFS services 19
3.3.2 Web-based Status Page . 20
3.3.3 Creating Volumes . 20
3.3.4 Deleting Volumes . 21

CONTENTS v

4 The XtreemFS Client 23

4.1 Installation . 23

4.1.1 Prerequisites . 23

4.1.2 Installing from Pre-Packaged Releases 23

4.1.3 Installing from Sources . 23

4.2 Mounting and Un-mounting . 24

5 XtreemFS Tools 25

5.1 Installation . 25

5.1.1 Prerequisites . 25

5.1.2 Installing from Pre-Packaged Releases 25

5.1.3 Installing from Sources . 25

5.2 Maintenance Tools . 26

5.2.1 MRC Database Conversion 26

5.2.2 Scrubbing and Cleanup . 26

5.3 User Tools . 27

5.3.1 Reading XtreemFS-specific File Info 27

5.3.2 Changing Striping Policies 28

5.3.3 Changing Replica Selection Policy 28

5.3.4 Read-Only Replication . 29

6 Troubleshooting and Support 31

6.1 Logfiles . 31

6.2 Support . 31

6.3 Troubleshooting . 31

A XtreemOS Integration 33

XtreemFS Security Preparations 33

B Command Line Utilities 35

vi CONTENTS

Chapter 1

Quick Start

This is the very short version to help you set up a local installation of XtreemFS.

1. Download XtreemFS RPMs/DEBs and install

(a) Download the RPMs or DEBs for your system from the XtreemFS web-
site

(b) open a root console (su or sudo)
(c) install with rpm -Uhv xtreemfs-client-1.0.x.rpm xtreemfs-server-1.0.x.rpm

2. Start the Directory Service:
/etc/init.d/xtreemfs-dir start

3. Start the Metadata Server:
/etc/init.d/xtreemfs-mrc start

4. Start the OSD:
/etc/init.d/xtreemfs-osd start

5. If not already loaded, load the FUSE kernel module:
modprobe fuse

6. Depending on your distribution, you may have to add users to a special group
to allow them to mount FUSE file systems. In openSUSE users must be in the
group trusted, in Ubuntu in the group fuse. You may need to log out and
log in again for the new group membership to become effective.

7. You can now close the root console and work as a regular user.

8. Wait a few seconds for the services to register at the directory service. You
can check the registry by opening the DIR status page in your favorite web
browser http://localhost:30638.

9. Create a new volume with the default settings:
xtfs_mkvol localhost/myVolume

10. Create a mount point:
mkdir ˜/xtreemfs

vii

http://www.XtreemFS.com
http://www.XtreemFS.com
http://localhost:30638

viii CHAPTER 1. QUICK START

11. Mount XtreemFS on your computer:

xtfs_mount localhost/myVolume ~/xtreemfs

12. Have fun ;-)

13. To un-mount XtreemFS:
xtfs_umount ˜/xtreemfs

You can also mount this volume on remote computers. First make sure that the
ports 32636, 32638 and 32640 are open for incoming TCP connections. You must
also specify a hostname that can be resolved by the remote machine! This hostname
has to be used instead of localhost when mounting.

Chapter 2

What is XtreemFS

2.1 About XtreemFS

With XtreemFS you are about to install a modern distributed and replicated file sys-
tem. As a distributed file system, XtreemFS stores your file data on several servers
and you can simply scale your file system by adding more hosts. XtreemFS is a
full-featured file system that supports the full POSIX file interface, including ex-
tended attributes (xattrs). In case of concurrent access by several distributed pro-
grams, XtreemFS provides you currently with NFS close-to-open consistency.

With version 1.0 XtreemFS also supports replication of files. The so called read-
only replication allows you to have multiple copies of immutable files. XtreemFS
also supports partial replicas which helps you to save disk capacity and network
bandwidth; only data that is requested by clients is stored in partial replicas.

XtreemFS has been designed for deployment in wide-area environments connected by
the Internet. This means that it allows you to mount an XtreemFS volume from any
location, given the right permissions; but it also implies that file system installations
can span multiple locations or data centers.

In a normal UNIX environment, XtreemFS has full permission and POSIX ACL
support. XtreemFS can also be integrated into X.509-based security architectures. Ac-
cess policies (as well several other policies) are pluggable and can be easily extended.
If you deploy XtreemFS as part of an XtreemOS installation, you will benefit from
its transparent integration with the XtreemOS Virtual Organization (VO) infrastruc-
ture in the form of dynamic user mappings and automatic mounting of home vol-
umes.

If you need high-performance access to your files, XtreemFS can help you with sup-
port for file striping: XtreemFS can store a file across several storage servers and
access the parts in parallel. The size of an individual stripe and the number of storage
servers used can be configured on a per-file or per-directory basis.

1

2 CHAPTER 2. WHAT IS XTREEMFS

Figure 2.1: The XtreemFS architecture and components.

2.2 XtreemFS Architecture

XtreemFS implements an object-based file system architecture (Fig. 2.1). The name
of this architecture comes from the fact that an object-based file system splits file
content into a series of fixed-size objects and stores them on its storage servers. In
contrast to block-based file systems, the size of such an object can vary from file to
file.
The metadata of a file (such as the file name or file size) is stored separate from the file
content on a Metadata server. This metadata server organizes file system metadata as
a set of volumes, each of which implements a separate file system namespace in form
of a directory tree.

2.2.1 The Components of XtreemFS

An XtreemFS installation contains three types of servers that can run on one or
several machines (Fig. 2.1):

• DIR - Directory Service
The directory service is the central registry for all services in XtreemFS. The
MRC uses it to discover storage servers.

• MRC - Metadata and Replica Catalog
The MRC stores the directory tree and file metadata such as file name, size
or modification time. Moreover, the MRC authenticates users and authorizes
access to files.

• OSD - Object Storage Device
An OSD stores arbitrary objects of files; clients read and write file data on
OSDs.

2.3. POLICIES 3

These servers are connected by the client to a file system. A client mounts one of
the volumes of the MRC in a local directory. It translates file system calls into RPCs
sent to the respective servers.

The client is implemented as a FUSE user-level driver that runs as a normal process.
FUSE itself is a kernel-userland hybrid that connects the user-land driver to Linux’
Virtual File System (VFS) layer where file system drivers usually live.

2.2.2 Security

As usual, XtreemFS security differentiates between authentication and authoriza-
tion. Authentication is the process of verifying a user’s or client’s identity, e.g. val-
idating and reading an X.509 certificate. In contrast, authorization is the process of
checking if a user has the permission to execute a certain operation, e.g. write access
to a file.

By default, XtreemFS uses unauthenticated and unencrypted TCP connections. How-
ever, SSL can be enabled in all XtreemFS services and the client. Using SSL requires
that all users and services provide valid X.509 certificates. Any data sent over a SSL
connection is encrypted. Using SSL, however, will increase the resource consump-
tion of all components, especially for connection setup (SSL handshake).

2.3 Policies

Many facets of the behavior of XtreemFS can be configured by means of policies.
A policy defines how a certain task is performed, e.g. how the MRC selects a set of
OSDs for a new file, or how it distinguishes between an authorized and an unau-
thorized user when files are accessed. Various policies have been defined that cover
different aspects.

2.3.1 OSD Selection Policies

When a new file is created, the MRC must decide which OSDs to use for storing the
file content. Based on the required number of OSDs defined in the file’s striping
policy, an OSD Selection Policy is responsible for selecting the most suitable OSDs.
OSD selection policies are assigned at volume granularity. Currently, there are the
following policies:

• Random OSD Selection (policy id 1)
Randomly selects OSDs from the list of all available OSDs that are alive and
have more than 2GB of free space left.

• Proximity-based OSD Selection (policy id 2)
Selects a group of OSDs that are close to each other. The distance is determined
by the IP address, i.e. OSDs on the same subnet are preferred. This policy is
particularly useful for striping, since it is desirable to have all OSDs at the same
site.

4 CHAPTER 2. WHAT IS XTREEMFS

• DNS based OSD Selection (policy id 3)
The FQDN of the client and all OSDs is compared and the maximum match
(from the end of the FQDN) is used to sort the OSDs. The policy selects the
OSDs with the highest number of characters that match. This policy can be
used to automatically select OSDs which are close to the client, if the length
of the match between two DNS entries also indicate a low latency between
two machines. The minimum match can be modified by setting the xattr
’xtreemfs.osdsel_policy_args’ to an integer value larger 0. OSDs with
a match smaller than the minimum match are never used.

2.3.2 Replica Selection Policies

When a client opens a file with more than one replica, the MRC uses a replica selec-
tion policy to sort the list of replicas for the client. Clients will always use the first
replica in the list. If a replica is not available, the client will automatically select the
next replica from the list. Replica selection policies can be used to sort the replica
lists, e.g. to ensure that clients use replicas which are close to them. By default, the
MRC returns an unmodified list of replicas. Section 5.3.3 describes how to set and
display the policy of a volume.

• Default Replica Selection (policy id 1)
The MRC returns an unmodified list of replicas to the client. This is the default
policy.

• DNS based Replica Selection (policy id 3)
This policy is identical to the DNS based OSD Selection (see Sec. 2.3.1). The
list of replicas is sorted from the longest FQDN name match to the shortest.

• Datacenter Map Replica Selection (policy id 4)
This policy uses a statically configured datacenter map that describes the dis-
tance between datacenters. It works only with IPv4 addresses at the moment.
Each datacenter has a list of matching IP addresses and networks which is used
to assign clients and replicas (OSDs) to datacenters. The replica list is sorted
according to the distance between replica and client starting from the closest
(smallest distance). Machines in the same datacenter have a distance of 0.

This policy requires a datacenter map configuration file in /etc/xos/xtreemfs/datacentermap
on the MRC machine which is loaded at MRC startup. This config file must
contain the following parameters:

– datacenters=A,B,C
A comma separated list of datacenters. Datacenter names may only con-
tain a-z, A-Z, 0-9 and _.

– distance.A-B=100
For each pair of datacenters, the distance must be specified. As distances
are symmetric, it is sufficient to specify A to B.

– addresses.A=192.168.1.1,192.168.2.0/24
For each datacenter a list of matching IP addresses or networks must be
specified.

2.3. POLICIES 5

– max_cache_size=1000
Sets the size of the address cache that is used to lookup IP-to-datacenter
matches.

A sample datacenter map could look like this:

datacenters=BERLIN,LONDON,NEW_YORK
distance.BERLIN-LONDON=10
distance.BERLIN-NEW_YORK=140
distance.LONDON-NEW_YORK=110
addresses.BERLIN=192.168.1.0/24
addresses.LONDON=192.168.2.0/24
addresses.NEW_YORK=192.168.3.0/24,192.168.100.0/25
max_cache_size=100

2.3.3 Striping Policies

XtreemFS allows the content of a file to be distributed among several storage devices
(OSDs). This has the benefit, that the file can be read or written in parallel on
multiple servers which increases the bandwidth. The more OSDs are used, the higher
the bandwidth available for reading or writing. The number of OSDs is called the
striping width.
A striping policy is a rule that defines how the objects are distributed on the avail-
able OSDs. Currently, XtreemFS implements only the RAID0 policy which simply
stores the objects in a round robin fashion on the OSDs. The RAID0 policy has two
parameters. The striping width defines to how many OSDs the file is distributed.
The stripe size defines the size of each object.
When using a striping width of 1, the files are not striped but each file is stored on
a single OSD. In that case, you can use any OSD Selection Policy which suits your
needs. For striped files (i.e. a striping width larger than 1) we recommend to use the
Proximity-based OSD selection policy, because the OSDs onto the files are striped
should reside on the same network for better performance and data availability.
Striping over several OSDs enhances the read and write bandwidth of a file, the
bandwidth increases the larger the striping width. Please note, that striping also
increases the probability of data loss. A striped file will become corrupted even if a
single OSDs it is stored on has a disk crash.

2.3.4 Authorization - Access Policies

User authorization is managed by means of Access Policies. An access policy defines
the access rights for any user on any file or directory contained in a volume. When
creating a new volume, the access policy has to be chosen, which cannot be changed
in the future. Various access policies can be used:

• Authorize All Policy (policy Id 1)
No authorization - everyone can do everything. This policy is useful if perfor-
mance of metadata operations matters more than security, since no recursive
evaluation of access policies is done.

6 CHAPTER 2. WHAT IS XTREEMFS

• POSIX ACLs & Permissions (policy Id 2)
This access policy implements the traditional POSIX permissions commonly
used on Linux, as well as POSIX ACLs, an extension that provides for ac-
cess control at the granularity of single users and groups. POSIX permissions
should be used as the default, as it guarantees maximum compatibility with
other file systems.

• Volume ACLs (policy Id 3)
Volume ACLs provide an access control model similar to POSIX ACLs & Per-
missions, but only allow one ACL for the whole volume. This means that
there is no recursive evaluation of access rights which yields a higher perfor-
mance at the price of a very coarse-grained access control.

2.3.5 Pluggable Policies

Administrators may extend the set of existing policies by defining plug-in policies.
Such policies are Java classes that implement a predefined policy interface. Currently,
the following policy interfaces exist:

• org.xtreemfs.common.auth.AuthenticationProvider
can be used to implement an individual mechanism to authenticate users and
groups

• org.xtreemfs.mrc.ac.FileAccessPolicy
can be used to implement an individual access control model on files, directo-
ries and volumes

• org.xtreemfs.mrc.osdselection.OSDSelectionPolicy
can be used to implement an individual policy for allocating OSDs to newly
created files

Note that there may only be one authentication provider per MRC, while file access
policies and OSD selection policies may differ for each volume. The former one
is identified by means of its class name (property authentication_provider, see
Sec. 3.2.4), while volume-related policies are identified by ID numbers. It is therefore
necessary to add a member field

public static final long POLICY_ID = 4711;

to all such policy implementations, where 4711 represents the individual ID num-
ber. Administrators have to ensure that such ID numbers neither clash with ID
numbers of built-in policies (1-9), nor with ID numbers of other plug-in policies.
When creating a new volume, IDs of plug-in policies may be used just like built-in
policy IDs.
Plug-in policies have to be deployed in the directory specified by the MRC config-
uration property policy_dir. The property is optional; it may be omitted if no
plug-in policies are supposed to be used. An implementation of a plug-in policy can
be deployed as a Java source or class file located in a directory that corresponds to
the package of the class. Library dependencies may be added in the form of source,
class or JAR files. JAR files have to be deployed in the top-level directory. All source
files in all subdirectories are compiled at MRC start-up time and loaded on demand.

Chapter 3

XtreemFS Services

3.1 Installation

When installing XtreemFS server components, you can choose from two different
installation sources: you can download one of the pre-packaged releases that we create
for most Linux distributions or you can install directly from the source tarball. In the
pre-packaged release, the server and the client parts are split into separate packages.

3.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

3.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-server-1.0.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-server-1.0.x.deb

Both packages will also install init.d scripts for an automatic start-up of the ser-
vices. Use insserv xtreemfs-dir, insserv xtreemfs-mrc and insserv xtreemfs-osd,
respectively, to automatically start the services during boot.

7

8 CHAPTER 3. XTREEMFS SERVICES

3.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make server

3.2 Configuration

Generally, the configuration files of XtreemFS are located in /etc/xos/xtreemfs/
if you installed from packages.

3.2.1 A Word about UUIDs

XtreemFS uses UUIDs (Universally Unique Identifiers) to be able to identify services
and their associated state independently from the machine they are installed on. This
implies that you cannot change the uuid of a MRC or OSD after it has been used for
the first time!
The Directory Service keeps a mapping from UUID to a port number and IP address
or hostname. Currently, each UUID can only be assigned to a single endpoint; the
netmask must be “*” which means that this mapping is valid in all networks. Upon
first start-up, OSDs and MRCs will create the mapping if it does not exist. They will
use the first available network device with a public address.
Changing the IP address, hostname or port is possible at any time. Due to the
caching of UUIDs in all components it can take some time until the new UUID
mapping is used by all OSDs, MRCs and clients. The TTL defines how long an
XtreemFS component is allowed to keep entries cached. The default value is 3600
seconds (1 hour). It should be set to shorter durations if services change their IP
address frequently.
To create a globally unique UUID you can use tools like uuidgen. During installa-
tion the post-install script will automatically create a UUID for each OSD and MRC
if it does not have a UUID assigned.

3.2.2 Automatic DIR Service Discovery

The OSD and MRC discover the DIR service automatically by default. On startup
they will broadcast requests to the local LAN and wait up to 10s for a response from
a DIR. This works only in a local LAN environment as broadcast messages are not
routed to other networks. Local firewalls on the computers on which the services are
running can also prevent the automatic discovery from working. The services will
select the first DIR which responded which can lead to non-deterministic behavior
if multiple DIR services are present.
Security: The automatic discovery is a potential security risk when used in un-
trusted environments as any user can start-up DIR services.
A statically configured DIR address and port can be used to disable DIR discovery in
the OSD and MRC (see Sec. 3.2.4, dir_service). By default. the DIR responds to
UDP broadcasts. To disable this feature, set discover = false in the DIR service
config file.

3.2. CONFIGURATION 9

3.2.3 Authentication

XtreemFS has an interface which allows MRC administrators to choose the way
of authenticating users. Basically, an MRC has two sources of information on users.
The first one is the user id and group ids sent by the client along with each request. In
addition, the MRC can use information included in the certificates if SSL is enabled.
The Authentication Providers are modules that implement different methods for
retrieving the user and group IDs to use.

UNIX uid/gid - NullAuthProvider

The NullAuthProvider is the default Authentication Provider. It simply uses the
user ID and group IDs sent by the XtreemFS client. This means that the client is
trusted to send the correct user/group IDs.

The XtreemFS Client will send the user ID and group IDs of the process which
executed the file system operation, not of the user who mounted the volume!

The superuser is identified by the user ID root and is allowed to do everything on
the MRC. This behavior is similar to NFS with no_root_squash.

Plain SSL Certificates - SimpleX509AuthProvider

XtreemFS supports two X.509 certificate “types” which can be used by the client.
When mounted with a service/host certificate the XtreemFS client is regarded as a
trusted system component. The MRC will accept any user ID and groups sent by
the client and use them for authorization as with the NullAuthProvider. This setup
is useful for volumes which are used by multiple users.

The second certificate type are regular user certificates. The MRC will only accept
the user name and group from the certificate and ignore the user ID and groups sent
by the client. Such a setup is useful if users are allowed to mount XtreemFS from
untrusted machines.

Both certificates are regular X.509 certificates. Service and host certificates are identi-
fied by a Common Name (CN) starting with host/ or xtreemfs-service/, which
can easily be used in existing security infrastructures. All other certificates are as-
sumed to be user certificates.

If a user certificate is used, XtreemFS will take the Distinguished Name (DN) as the
user ID and the Organizational Unit (OU) as the group ID.

Superusers must have xtreemfs-admin as part of their Organizational Unit (OU).

XtreemOS Certificates - XOSAuthProvider

In contrast to plain X.509 certificates, XtreemOS embeds additional user informa-
tion as extensions in XtreemOS-User-Certificates. This authentication provider uses
this information (global UID and global GIDs), but the behavior is similar to the
SimpleX509AuthProvider.

The superuser is identified by being member of the VOAdmin group.

10 CHAPTER 3. XTREEMFS SERVICES

3.2.4 List of Configuration Options

All configuration parameters that may be used to define the behavior of the different
services are listed in this section. Unless marked as optional, a parameter has to occur
(exactly once) in a configuration file.

admin_password optional

Services DIR, MRC, OSD
Values String
Default empty
Description Defines the admin password that must be sent to authorize requests

like volume creation, deletion or shutdown.

authentication_provider

Services MRC
Values Java class name
Default org.xtreemfs.common.auth.NullAuthProvider
Description Defines the Authentication Provider to use to retrieve the user iden-

tity (user ID and group IDs). See Sec. 3.2.3 for details.

capability_secret

Services MRC, OSD
Values String
Default -
Description Defines a shared secret between the MRC and all OSDs. The secret

is used by the MRC to sign capabilities, i.e. security tokens for data
access at OSDs. In turn, an OSD uses the secret to verify that the
capability has been issued by the MRC.

checksums.enabled

Services OSD
Values true, false
Default false
Description If set to true, the OSD will calculate and store checksums for newly

created objects. Each time a checksummed object is read, the check-
sum will be verified.

checksums.algorithm

Services OSD
Values Adler32, CRC32
Default Adler32
Description Must be specified if checksums.enabled is enabled. This property

defines the algorithm used to create OSD checksums.

3.2. CONFIGURATION 11

database.dir

Services DIR, MRC
Values absolute file system path to a directory
Default DIR: /var/lib/xtreemfs/dir/database,

MRC: /var/lib/xtreemfs/mrc/database
Description The directory in which the Directory Service or MRC will store their

databases. This directory should never be on the same partition as any
OSD data, if both services reside on the same machine. Otherwise,
deadlocks may occur if the partition runs out of free disk space!

database.log

Services MRC
Values absolute file system path
Default MRC: /var/lib/xtreemfs/mrc/dblog
Description The directory the MRC uses to store database logs. This directory

should never be on the same partition as any OSD data, if both ser-
vices reside on the same machine. Otherwise, deadlocks may occur if
the partition runs out of free disk space!

debug.level optional

Services DIR, MRC, OSD
Values 0, 1, 2, 3, 4, 5, 6, 7
Default 6
Description The debug level determines the amount and detail of information

written to logfiles. Any debug level includes log messages from lower
debug levels. The following log levels exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

12 CHAPTER 3. XTREEMFS SERVICES

debug.categories optional

Services DIR, MRC, OSD
Values all, lifecycle, net, auth, stage, proc, db, misc
Default all
Description Debug categories determine the domains for which log messages will

be printed. By default, there are no domain restrictions, i.e. log mes-
sages form all domains will be included in the log. The following
categories can be selected:

all - no restrictions on the category

lifecycle - service lifecycle-related messages, including startup and shut-
down events

net - messages pertaining to network traffic and communication be-
tween services

auth - authentication and authorization-related messages

stage - messages pertaining to the flow of requests through the different
stages of a service

proc - messages about the processing of requests

db - messages that are logged in connection with database accesses

misc - any other log messages that do not fit in one of the previous
categories

Note that it is possible to specify multiple categories by means of a
comma or space-separated list.

dir_service.host

Services MRC, OSD
Values hostname or IP address
Default .autodiscover
Description Specifies the hostname or IP address of the directory service (DIR)

at which the MRC or OSD should register. The MRC also uses this
directory service to find OSDs. If set to .autodiscover the service
will use the automatic DIR discovery mechanism (see Sec. 3.2.2).

dir_service.port

Services MRC, OSD
Values 1 .. 65535
Default 32638
Description Specifies the port on which the remote directory service is listening.

Must be identical to the listen_port in your directory service con-
figuration.

3.2. CONFIGURATION 13

discover optional

Services DIR
Values true, false
Default true
Description If set to true the DIR will received UDP broadcasts and advertise

itself in response to XtreemFS components using the DIR automatic
discovery mechanism. If set to false, the DIR will ignore all UDP
traffic. For details see Sec. 3.2.2.

geographic_coordinates

Services DIR, MRC, OSD
Values String
Default empty
Description Specifies the geographic coordinates which are registered with the di-

rectory service. Used e.g. by the web console.

http_port

Services DIR, MRC, OSD
Values 1 .. 65535
Default 30636 (MRC), 30638 (DIR), 30640 (OSD)
Description Specifies the geographic coordinates which are registered with the di-

rectory service. Used e.g. by the web console.

listen.address optional

Services OSD
Values IP address
Default -
Description If specified, defines the interface to listen on. If not specified, the

service will listen on all interfaces (any).

listen.port

Services DIR, MRC, OSD
Values 1 .. 65535
Default DIR: 32638,

MRC: 32636,
OSD: 32640

Description The port to listen on for incoming connections (TCP). The OSD uses
TCP and UDP on the specified port. Make sure to configure your
firewall to allow incoming TCP and UDP traffic on the specified port.

14 CHAPTER 3. XTREEMFS SERVICES

local_clock_renewal

Services MRC, OSD
Values milliseconds
Default 50
Description Reading the system clock is a slow operation on some systems

(e.g. Linux) as it is a system call. To increase performance,
XtreemFS services use a local variable which is only updated every
local_clock_renewal milliseconds.

no_atime

Services MRC
Values true, false
Default true
Description The POSIX standard defines that the atime (timestamp of last file ac-

cess) is updated each time a file is opened, even for read. This means
that there is a write to the database and hard disk on the MRC each
time a file is read. To reduce the load, many file systems (e.g. ext3)
including XtreemFS can be configured to skip those updates for per-
formance. It is strongly suggested to disable atime updates by setting
this parameter to true.

no_fsync optional

Services MRC
Values true, false
Default false
Description By default, the MRC will write all file-modifying operations (such as

create file, delete etc.) to disk followed by a fsync to ensure data is
written to the hard disk. While this ensures maximum data safety in
case of crash of the MRC server, it also reduces the performance of
the MRC. Set this to true, if you want much higher performance at
the risk of losing some recent file operations in case of a server crash.

object_dir

Services OSD
Values absolute file system path to a directory
Default /var/lib/xtreemfs/osd/
Description The directory in which the OSD stores the objects. This directory

should never be on the same partition as any DIR or MRC database,
if both services reside on the same machine. Otherwise, deadlocks
may occur if the partition runs out of free disk space!

3.2. CONFIGURATION 15

osd_check_interval

Services MRC
Values seconds
Default 300
Description The MRC regularly asks the directory service for suitable OSDs to

store files on (see OSD Selection Policy, Sec. 2.3.1). This parameter
defines the interval between two updates of the list of suitable OSDs.

remote_time_sync

Services MRC, OSD
Values milliseconds
Default 30,000
Description MRCs and OSDs all synchronize their clocks with the directory ser-

vice to ensure a loose clock synchronization of all services. This is re-
quired for leases to work correctly. This parameter defines the interval
in milliseconds between time updates from the directory service.

report_free_space

Services OSD
Values true, false
Default true
Description If set to true, the OSD will report its free space to the directory ser-

vice. Otherwise, it will report zero, which will cause the OSD not to
be used by the OSD Selection Policies (see Sec. 2.3.1).

ssl.enabled

Services DIR, MRC, OSD
Values true, false
Default false
Description If set to true, the service will use SSL to authenticate and encrypt

connections. The service will not accept non-SSL connections if
ssl.enabled is set to true.

ssl.service_creds

Services DIR, MRC, OSD
Values path to file
Default DIR: /etc/xos/xtreemfs/truststore/certs/ds.p12,

MRC: /etc/xos/xtreemfs/truststore/certs/mrc.p12,
OSD: /etc/xos/xtreemfs/truststore/certs/osd.p12

Description Must be specified if ssl.enabled is enabled. Specifies the
file containing the service credentials (X.509 certificate and pri-
vate key). PKCS#12 and JKS format can be used, set
ssl.service_creds.container accordingly. This file is used dur-
ing the SSL handshake to authenticate the service.

16 CHAPTER 3. XTREEMFS SERVICES

ssl.service_creds.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default pkcs12
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.service_creds file.

ssl.service_creds.pw

Services DIR, MRC, OSD
Values String
Default -
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the credentials file ssl.service_creds.

ssl.trusted_certs

Services DIR, MRC, OSD
Values path to file
Default /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
Description Must be specified if ssl.enabled is enabled. Specifies the file con-

taining the trusted root certificates (e.g. CA certificates) used to au-
thenticate clients.

ssl.trusted_certs.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default JKS
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.trusted_certs file.

ssl.trusted_certs.pw

Services DIR, MRC, OSD
Values String
Default -
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the trusted certificates file ssl.trusted_certs.

uuid

Services MRC, OSD
Values String, but limited to alphanumeric characters, - and .
Default -
Description Must be set to a unique identifier, preferably a UUID according

to RFC 4122. UUIDs can be generated with uuidgen. Example:
eacb6bab-f444-4ebf-a06a-3f72d7465e40.

3.2. CONFIGURATION 17

3.2.5 Configuring SSL Support

In order to enable certificate-based authentication in an XtreemFS installation, ser-
vices need to be equipped with X.509 certificates. Certificates are used to establish
a mutual trust relationship among XtreemFS services and between the XtreemFS
client and XtreemFS services.

It is not possible to mix SSL-enabled and non-SSL services in an XtreemFS installa-
tion!

Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have been created and signed, the credentials may need to be converted into the
correct file format. XtreemFS services also need a trust store that contains all trusted
Certification Authority certificates.

By default, certificates and credentials for XtreemFS services are stored in

/etc/xos/xtreemfs/truststore/certs

Converting PEM files to PKCS#12

The simplest way to provide the credentials to the services is by converting your
signed certificate and private key into a PKCS#12 file using openssl:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service. The passwords chosen when
asked must be set as a property in the corresponding service configuration file.

Importing trusted certificates from PEM into a JKS

The certificate (or multiple certificates) from your CA (or CAs) can be imported
into a Java Keystore (JKS) using the Java keytool which comes with the Java JDK
or JRE.

Execute the following steps for each CA certificate using the same keystore file.

$> keytool -import -alias rootca -keystore trusted.jks \
-trustcacerts -file ca-cert.pem

This will create a new Java Keystore trusted.jks with the CA certificate in the cur-
rent working directory. The password chosen when asked must be set as a property
in the service configuration files.

Note: If you get the following error

18 CHAPTER 3. XTREEMFS SERVICES

$> keytool error: java.lang.Exception: Input not an X.509 certificate

you should remove any text from the beginning of the certificate (until the ––-BEGIN
CERTIFICATE––- line).

Sample Setup

Users can easily set up their own CA (certificate authority) and create and sign cer-
tificates using openssl for a test setup.

1. Set up your test CA.

(a) Create a directory for your CA files

$> mkdir ca

(b) Create a private key and certificate request for your CA.

$> openssl req -new -newkey rsa:1024 -nodes -out ca/ca.csr \
-keyout ca/ca.key

Enter something like XtreemFS-DEMO-CA as the common name (or
something else, but make sure the name is different from the server and
client name!).

(c) Create a self-signed certificate for your CA which is valid for one year.

$> openssl x509 -trustout -signkey ca/ca.key -days 365 -req \
-in ca/ca.csr -out ca/ca.pem

(d) Create a file with the CA’s serial number

$> echo "02" > ca/ca.srl

2. Set up the certificates for the services and the XtreemFS Client.
Replace service with dir, mrc, osd and client.

(a) Create a private key for the service.
Use XtreemFS-DEMO-service as the common name for the certificate.
$> openssl req -new -newkey rsa:1024 -nodes -out service.req -keyout service.key

(b) Sign the certificate with your demo CA.
The certificate is valid for one year.
$> openssl x509 -CA ca/ca.pem -CAkey ca/ca.key -CAserial ca/ca.srl -req -in service.req -out service.pem -days 365

(c) Export the service credentials (certificate and private key) as a PKCS#12
file.
Use “passphrase” as export password. You can leave the export password
empty for the XtreemFS Client to avoid being asked for the password on
mount.
$> openssl pkcs12 -export -in service.pem -inkey service.key -out service.p12 -name "service"

(d) Copy the PKCS#12 file to the certificates directory.
$> mkdir -p /etc/xos/xtreemfs/truststore/certs

$> cp service.p12 /etc/xos/xtreemfs/truststore/certs

3.3. MANAGEMENT 19

3. Export your CA’s certificate to the trust store and copy it to the certificate dir.
You should answer “yes” when asked “Trust this certificate”.
Use “passphrase” as passphrase for the keystore.

$> keytool -import -alias ca -keystore trusted.jks\
-trustcacerts -file ca/ca.pem

$> cp trusted.jks /etc/xos/xtreemfs/truststore/certs

4. Configure the services. Edit the configuration file for all your services. Set the
following configuration options (see Sec. 3.2 for details).
ssl.enabled = true
ssl.service_creds.pw = passphrase
ssl.service_creds.container = pkcs12
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/service.p12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/trusted.jks
ssl.trusted_certs.pw = passphrase
ssl.trusted_certs.container = jks

5. Start up the XtreemFS services (see Sec. 3.3.1).

6. Create a new volume (see Sec. 3.3.3 for details).

$> xtfs_mkvol --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 localhost/test

7. Mount the volume (see Sec. 4.2 for details).

$> xtfs_mount --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 localhost/test /mnt

3.3 Management

This section covers all tools and functionality for XtreemFS management and trac-
ing. In general, the use of management tools is restricted to superusers.

3.3.1 Starting and Stopping the XtreemFS services

If you installed a pre-packaged release you can start, stop and restart the services with
the init.d scripts:

$> /etc/init.d/xtreemfs-ds start
$> /etc/init.d/xtreemfs-mrc start
$> /etc/init.d/xtreemfs-osd start

or

$> /etc/init.d/xtreemfs-ds stop
$> /etc/init.d/xtreemfs-mrc stop
$> /etc/init.d/xtreemfs-osd stop

Note that the Directory Service should be started first, in order to allow other ser-
vices an immediate registration. Once a Directory Service and at least one OSD and
MRC are running, XtreemFS is operational.

20 CHAPTER 3. XTREEMFS SERVICES

3.3.2 Web-based Status Page

The XtreemFS services all have a HTML status page which can be used to check if
the service is working correctly (Fig. 3.1). It can be displayed by opening the service
URL in your favorite web browser, e.g.
http://my-mrc-host.com:30636/. Make sure to use the right port, see http_port
in the service config file.

Figure 3.1: OSD status web page

3.3.3 Creating Volumes

Volumes can be created with the xtfs_mkvol command line utility. Please see man
xtfs_mkvol for a full list of options and usage.
When creating a volume, it is recommended to specify the access policy (see Sec.
2.3.4). If not specified, POSIX permissions/ACLs will be chosen by default. Access
policies cannot be changed afterwards.
An OSD selection policy (see Sec. 2.3.1) can also be specified per volume, but can
be changed anytime. By default, a random selection of available OSDs is assigned to
newly created files.
In addition, it is recommended to set a default striping policy (see Sec. 2.3.3). If no
per-file or per-directory default striping policy overrides the volume’s default striping
policy, the volume’s policy is used for new files and directories. If no volume policy
is explicitly defined, a RAID0 policy with a stripe size of 128kB and a width of 1 will
be assigned to the volume.
An example call to xtfs_mkvol for creating a volume with POSIX ACLs, 256kB
stripe size and a stripe width of 1 (which means no striping):

3.3. MANAGEMENT 21

$> xtfs_mkvol -a POSIX -p RAID0 -s 256 -w 1 \
my-mrc-host.com:32636/myVolume

3.3.4 Deleting Volumes

The xtfs_rmvol tool can be used to delete a volume. This also deletes all files and
data on that volume! Please see man xtfs_rmvol for a full list of options and usage.

Example call to xtfs_rmvol to delete myVolume:

$> xtfs_rmvol my-mrc-host.com:32636/myVolume

Volume deletion is restricted to volume owners and privileged users.

22 CHAPTER 3. XTREEMFS SERVICES

Chapter 4

The XtreemFS Client

4.1 Installation

As for the XtreemFS Services, there are two different installation sources for the
XtreemFS Client: pre-packaged releases and source tarballs.

4.1.1 Prerequisites

For both installations you need FUSE 2.6 or newer, openSSL 0.9.8 or newer and a
Linux 2.6 kernel. For optimal performance we suggest to use FUSE 2.8 with a kernel
version 2.6.26 or newer.
To install the client tools,
To build the XtreemFS Client from sources, you need the openSSL headers (e.g.
openssl-devel package), python ≥ 2.4, and gcc-c++ ≥ 4.2.

4.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-client-1.0.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-client-1.0.x.deb

4.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make client

23

24 CHAPTER 4. THE XTREEMFS CLIENT

4.2 Mounting and Un-mounting

Before mounting XtreemFS volumes, please ensure that the FUSE kernel module is
loaded. Please check your distribution’s manual to see, if users must be in a special
group (e.g. trusted in openSUSE) to be allowed to mount FUSE.

$> su
Password:
#> modprobe fuse
#> exit

To mount an XtreemFS volume use the xtfs_mount tool.

$> xtfs_mount remote.dir.machine/myVolume /xtreemfs

remote.dir.machine describes the host with the Directory Service at which the
volume is registered; myVolume is the name of the volume name to be mounted.
/xtreemfs is the directory on the local file system to which the XtreemFS volume
will be mounted. For more options, please refer to man xtfs_mount.

The client will immediately go into background and won’t display any error mes-
sages. Use the -f option to prevent the mount process from going into background
and get all error messages printed to the console.

Access to a FUSE mount is usually restricted to the user who mounted the volume.
To allow the root user or any other user on the system to access the mounted vol-
ume, the FUSE options -o allow_root and -o allow_other can be used with
xtfs_mount. They are, however, mutually exclusive. In order to use these options,
the system administrator must create a FUSE configuration file /etc/fuse.conf
and add a line user_allow_other.

To check that a volume is mounted use the mount command. It ouputs a list of all
mounts in the system. XtreemFS volumes are listed as type fuse:

/dev/fuse on /xtreemfs type fuse (rw,nosuid,nodev,user=userA)

Volumes are unmounted using the xtfs_umount tool.

$> xtfs_umount /xtreemfs

Chapter 5

XtreemFS Tools

5.1 Installation

When installing XtreemFS tools, you can choose from two different installation
sources: you can download one of the pre-packaged releases that we create for most
Linux distributions or you can install directly from the source tarball. In the pre-
packaged release, the server and the client parts are split into separate packages.

5.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system.
When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

5.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-tools-1.0.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-tools-1.0.x.deb

All XtreemFS tools will be installed to /usr/bin.

5.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make

25

26 CHAPTER 5. XTREEMFS TOOLS

5.2 Maintenance Tools

Tools for the maintenance of an XtreemFS installation will be described in the fol-
lowing.

5.2.1 MRC Database Conversion

The format in which the MRC stores its data on disk may change with future
XtreemFS versions. In order that XtreemFS server components may be updated
without losing the whole content of the file system, it is possible to create a version-
independent XML representation of the metadata stored in MRC database.

Such an XML representation can e.g. be created as follows:

$> xtfs_mrcdbtool -mrc my-mrc-host.com:32636 \
dump /tmp/dump.xml

This call will create a file dump.xml containing the entire MRC database content in
the /tmp directory at my-mrc-host.com.

To restore an MRC database from a dump, execute

$> xtfs_mrcdbtool -mrc my-mrc-host.com:32636 \
restore /tmp/dump.xml

This will restore the database stored in /tmp/dump.xml at my-mrc-host.com. Note
that for safety reasons, it is only possible to restore a database from a dump if the
database of the running MRC does not have any content. To restore an MRC
database, it is thus necessary to delete all MRC database files before starting the
MRC.

5.2.2 Scrubbing and Cleanup

In real-world environments, errors occur in the course of creating, modifying or
deleting files. This can cause corruptions of file data or metadata. Such things happen
e.g. if the client is suddenly terminated, or loses connection with a server component.
There are several such scenarios: if a client writes to a file but does not report file
sizes received from the OSD back to the MRC, inconsistencies between the file size
stored in the MRC and the actual size of all objects in the OSD will occur. If a client
deletes a file from the directory tree, but cannot reach the OSD, orphaned objects
will remain on the OSD. If an OSD is terminated during an ongoing write operation,
file content will become corrupted.

In order to detect and, if possible, resolve such inconsistencies, tools for scrubbing
and OSD cleanup exist. To check the consistency of file sizes and checksums, the
following command can be executed:

$> xtfs_scrub -dir oncrpc://my-dir-host.com:32638 xtreemfsVolume

5.3. USER TOOLS 27

This will scrub each file in the volume myVolume, i.e. check file size consistency
and set the correct file size on the MRC, if necessary, and check whether an invalid
checksum in the OSD indicates a corrupted file content. The -dir argument speci-
fies the directory service that will be used to resolve service UUIDs. Please see man
xtfs_scrub for further details.

A second tool scans an OSD for orphaned objects, which can be used as follows:

$> xtfs_cleanup -dir oncrpc://localhost:32638 \
uuid:u2i3-28isu2-iwuv29-isjd83

The given UUID identifies the OSD to clean and will be resolved by the directory
service defined by the -dir option (localhost:32638 in this example). The process
will be started and can be stopped by setting the option -stop. To watch the cleanup
progress use option -i for the interactive mode. For further information see man
xtfs_cleanup.

5.3 User Tools

There is a range of tools for the specific features of XtreemFS, which will be described
in the following.

5.3.1 Reading XtreemFS-specific File Info

In addition to the regular file system information provided by the stat Linux utility,
XtreemFS provides the xtfs_stat tool which displays XtreemFS specific informa-
tion for a file or directory.

$> cd /xtreemfs
$> echo ’Hello World’ > test.txt
$> xtfs_stat remote.mrc.machine/myVolume/test.txt

will produce output similar to the following:

type = directory
nlink = 1
size = 0
atime = 2009-05-05T09:44:16.000Z
mtime = 2009-05-05T10:10:06.000Z
ctime = 2009-05-05T10:10:06.000Z
owner user id = xtreemfs
owner group id = users
file_id = 0fa6c684-4885-48b1-a678-babdfae8db37:1
truncate epoch = 2031654

28 CHAPTER 5. XTREEMFS TOOLS

The fileID is the unique identifier of the file used on the OSDs to identify the file’s
objects. The owner/group fields are shown as reported by the MRC, you may see
other names on your local system if there is no mapping (i.e. the file owner does not
exist as a user on your local machine). Finally, the XtreemFS replica list shows the
striping policy of the file, the number of replicas and for each replica, the OSDs used
to store the objects.

5.3.2 Changing Striping Policies

It is not (yet) possible to change the striping policy of an existing file, as this would
require moving and reformatting data among OSDs. However, individual striping
policies can be assigned to new files (i.e. empty files) by changing the default striping
policy of the parent directory or volume. For this purpose, XtreemFS provides the
xtfs_sp tool. The tool can be used to change the striping policy that will be assigned
to newly created files.

$> xtfs_sp --set -p RAID0 -w 4 -s 256 /xtreemfs

In addition, the tool can be used to retrieve the default striping policy of a volume
or directory.

$> xtfs_sp --get /xtreemfs

The output will be similar to the following:

file: /xtreemfs
policy: STRIPING_POLICY_RAID0
stripe-size: 4
width (kB): 256

When creating a new file, XtreemFS will first check whether a default striping policy
has been assigned to the parent directory. If this is not the case, the default striping
policy for the volume will be used as the striping policy for the new file. Changing
a volume’s or directory’s default striping policy requires superuser access rights or
ownership of the directory or volume.

5.3.3 Changing Replica Selection Policy

The replica selection policy can only be set for the entire volume. The policies
are described in Sec. 2.3.2. To show and modify the policy for a volume, use the
xtfs_repl tool.

$> xtfs_repl --rsp_get /xtreemfs

displays the current replica selection policy used for the volume. To change the
policy to use the datacenter map for a volume, use

$> xtfs_repl --rsp_set dcmap /xtreemfs

If you want to use a custom (i.e. plug-in) policy, pass the id instead of the name.

5.3. USER TOOLS 29

5.3.4 Read-Only Replication

Read-only replication allows you to create copies of files on several OSDs. Since
the files are immutable (read-only) there is no overhead for coordinating the replicas.
XtreemFS supports partial and full replicas. A partial replica will only fetch the data
requested by a client (on demand). A full replica does the same, but it also fetches
the data in the background without client requests until all data of the file has been
replicated (background replication).

With XtreemFS all replicas are initially empty and can be used immediately by appli-
cations. If a replica does not have the requested data, it fetches it from another replica
and saves it locally for future requests. This helps you to reduce start-up times, and
saves network bandwidth and disk usage.

The XtreemFS client gets a list of replicas from the MRC when opening a file. This
list is sorted according to the volume’s replica selection policy, i.e. the first replica in
the list is the “best” replica for the client. The client will use the first replica in the
list and automatically switches to the next one if it is not reachable.

So far XtreemFS only supports to manage replicas manually. Before the replication
can be used the file must be marked as read-only with the following command:

$> xtfs_repl --set_readonly local-path-of-file

After a file is marked as read-only replicas can be added. The tool supports differend
replica creation modes. The automatic mode retrieves a list of OSDs from the MRC
and chooses the best OSD according to the current replica selection policy. You can
also select an OSD by specifying its UUID on the command line.

By default, partial replicas will be created. To create a full replica the option –full
must be set.

XtreemFS supports different transfer strategies which has an big impact on the speed
of the replication and the order in which objects are fetched. A transfer strategy
must be chosen for each replica.

To create a full replica and usage of the random transfer strategy, the following com-
mand must be used. The OSDs are selected according to the volume’s replica selec-
tion policy. See Sec. 2.3.2 for a description of the policies.

$> xtfs_repl --add_auto --full --strategy random local-path-of-file

To list all replicas and OSDs of the file use:

$> xtfs_repl -l local-path-of-file

Removing also supports multiple modes. Again there is a mode which is choosing
the replica randomly. To remove a specific replica, the head-OSD (first OSD) of this
replica must be given as an argument. At least one complete replica must exist, so
the tool will not remove a complete replica, if no others exists. To remove the just
created replica use the following command and change head-osd to the one listed by
xtfs_repl -l:

30 CHAPTER 5. XTREEMFS TOOLS

$> xtfs_repl -r head-OSD local-path-of-file

For further options see:

$> xtfs_repl -h

Chapter 6

Troubleshooting and Support

6.1 Logfiles

The logfiles for the XtreemFS services are located in /var/log/xtreemfs. The
client generates no output, unless the -f and -d INFO options are specified.

6.2 Support

Please visit the XtreemFS website at www.XtreemFS.org for links to the user mailing
list and IRC channel.

6.3 Troubleshooting

Problem: The client hangs when opening/copying/creating a file but operations
like ls or mkdir work.

Solution: This problem can occur when an OSD uses a UUID which resolves to an
address that the client cannot (correctly) resolve. If you use e.g. localhost:32640
as the UUID for the OSD, the client will try to contact the local machine instead
of the machine on which the OSD runs. Check the status page of your Directory
Service and check the UUID of the OSDs.

Problem: xtfs_mount does not print an error message but the volume is not
mounted (i.e. not listed in the output of mount).

Solution: The client xtfs_mount automatically goes into background and does not
print any error messages or warnings. Use the -f flag when mounting to prevent the
client from going into background. All error messages will be printed to the console.

31

http://www.XtreemFS.org

32 CHAPTER 6. TROUBLESHOOTING AND SUPPORT

Appendix A

XtreemOS Integration

XtreemFS Security Preparations

XtreemFS can be integrated in an existing XtreemOS VO security infrastructure.
XtreemOS uses X.509 certificates to authenticate users in a Grid system, so the gen-
eral setup is similar to a normal SSL-based configuration.
Thus, in an XtreemOS environment, certificates have to be created for the services
as a first step. This is done by issuing a Certificate Signing Request (CSR) to the RCA
server by means of the create-server-csr command. For further details, see the
Section Using the RCA in the XtreemOS User Guide.
Signed certificates and keys generated by are RCA infrastructure are stored locally in
PEM format. Since XtreemFS services are currently not capable of processing PEM
certificates, keys and certificates have to be converted to PKCS12 and Java Keystore
format, respectively.
Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have created and signed, the conversion has to take place. Assuming that cer-
tificate/private key pairs reside in the current working directory for the Directory
Service, an MRC and an OSD (ds.pem, ds.key, mrc.pem, mrc.key, osd.pem and
osd.key), the conversion can be initiated with the following commands:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service.
XtreemFS services need a trust store that contains all trusted Certification Author-
ity certificates. Since all certificates created via the RCA have been signed by the
XtreemOS CA, the XtreemOS CA certificate has to be included in the trust store.
To create a new trust store containing the XtreemOS CA certificate, execute the
following command:

33

34 APPENDIX A. XTREEMOS INTEGRATION

$> keytool -import -alias xosrootca -keystore xosrootca.jks \
-trustcacerts -file \
/etc/xos/truststore/xtreemosrootcacert.pem

This will create a new Java Keystore xosrootca.jks with the XtreemOS CA cer-
tificate in the current working directory. The password chosen when asked will later
have to be added as a property in the service configuration files.

Once all keys and certificates have been converted, the resulting files should be
moved to /etc/xos/xtreemfs/truststore/certs as root:

mv ds.p12 /etc/xos/xtreemfs/truststore/certs
mv mrc.p12 /etc/xos/xtreemfs/truststore/certs
mv osd.p12 /etc/xos/xtreemfs/truststore/certs
mv xosrootca.jks /etc/xos/xtreemfs/truststore/certs

For setting up a secured XtreemFS infrastructure, each service provides the following
properties:

specify whether SSL is required
ssl.enabled = true

server credentials for SSL handshakes
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/\
service.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12

trusted certificates for SSL handshakes
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/\
xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

service.p12 refers to the converted file containing the credentials of the respective
service. Make sure that all paths and passphrases (xtreemfs in this example) are
correct.

Appendix B

Command Line Utilities

xtfs_cleanup Deletes orphaned objects on an OSD or creates new metadata objects
for orphaned files.

xtfs_lsvol Lists the volumes on an MRC.

xtfs_mkvol Creates a new volume on an MRC.

xtfs_mount The XtreemFS client which mounts an XtreemFS volume locally on a
machine.

xtfs_mrcdbtool Dumps an XML representation of the MRC database to a given
directory in the MRC’s local file system.

xtfs_repl Displays and controls the replication of files and the replication policies.

xtfs_rmvol Deletes a volume and all files on that volume from the MRC and the
OSDs.

xtfs_stat Displays XtreemFS specific file information such as the striping policy and
the OSDs.

xtfs_sp Displays and modifies the striping policy for a file, or the default striping
policy for directories and volumes.

xtfs_scrub Examines all files in a volume for incorrect file sizes and checksums. In
case of incorrect file sizes, file sizes are corrected at the MRC.

xtfs_umount Un-mounts a mounted XtreemFS volume.

35

Index

Access Policy, 5
Authorize All, 5
POSIX ACLs, 6
POSIX Permissions, 6
Volume ACLs, 6

allow_others option, 24
allow_root option, 24
Architecture, 2
Authentication, 3
Authentication Provider, 9

NullAuthProvider, 9
SimpleX509AuthProvider, 9
XOSAuthProvider, 9

Authorization, 3
Authorize All Access Policy, 5

CA
Certificate Authority, 18

Certificate, 3, 17
Certificate Authority, 18
Client, 3
Create Volume, 20
Credentials, 17

Datacenter Map Replica Selection, 4
Default Replica Selection Policy, 4
Delete Volume, 21
DIR, 2
Directory Service, 2
DNS based OSD Selection, 4
DNS based Replica Selection, 4

fileID, 28
FUSE, 3

init.d, 19

Java KeyStore, 17
JKS, 17

Metadata, 2
Metadata and Replica Catalog, 2

Metadata Server, 2
Mount, 24
Mounting, 3
MRC, 2

NullAuthProvider, 9

Object, 2
Object Storage Device, 2
Object-base File System, 2
OSD, 2
OSD Selection Policy, 3

DNS based, 4
Proximity-based, 3
Random, 3

PKCS#12, 17
Policy

Access Policy, 5
OSD Selection Policy, 3
Striping Policy, 5

POSIX ACLs Access Policy, 6
POSIX Permissions Access Policy, 6
Proximity-based OSD Selection, 3

RAID0, 5
Random OSD Selection, 3
Read-only Replication, 29
Replica Selection Policy

datacenter map, 4
default, 4
DNS based, 4

Replication, 29
read-only, 29

SimpleX509AuthProvider, 9
SSL, 3
Status Page, 20
Storage Server, 2
Stripe Size, 5
Striping, 5

36

INDEX 37

Stripe Size, 5
Striping Width, 5

Striping Policy, 5
Striping Width, 5

Unmount, 24
user_allow_other option, 24
UUID, 8

VFS, 3
Volume, 2, 3

Create, 20
Delete, 21
Mount, 24
Un-mount, 24

Volume ACLs Access Policy, 6

Width, Striping Width, 5

X.509, 3, 17
XOSAuthProvider, 9
xtfs_mkvol, 20
xtfs_mount, 24
xtfs_repl, 29
xtfs_rmvol, 21
xtfs_sp, 28
xtfs_stat, 27
xtfs_umount, 24
XtreemFS stat, 27
XtreemFS striping policy tool, 28
XtreemOS

Integration, 33
XtreemOS Certificates, 9

	Quick Start
	What is XtreemFS
	About XtreemFS
	XtreemFS Architecture
	The Components of XtreemFS
	Security

	Policies
	OSD Selection Policies
	Replica Selection Policies
	Striping Policies
	Authorization - Access Policies
	Pluggable Policies

	XtreemFS Services
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Configuration
	A Word about UUIDs
	Automatic DIR Service Discovery
	Authentication
	UNIX uid/gid - NullAuthProvider
	Plain SSL Certificates - SimpleX509AuthProvider
	XtreemOS Certificates - XOSAuthProvider

	List of Configuration Options
	admin_password optional
	authentication_provider
	capability_secret
	checksums.enabled
	checksums.algorithm
	database.dir
	database.log
	debug.level optional
	debug.categories optional
	dir_service.host
	dir_service.port
	discover optional
	geographic_coordinates
	http_port
	listen.address optional
	listen.port
	local_clock_renewal
	no_atime
	no_fsync optional
	object_dir
	osd_check_interval
	remote_time_sync
	report_free_space
	ssl.enabled
	ssl.service_creds
	ssl.service_creds.container
	ssl.service_creds.pw
	ssl.trusted_certs
	ssl.trusted_certs.container
	ssl.trusted_certs.pw
	uuid

	Configuring SSL Support
	Converting PEM files to PKCS#12
	Importing trusted certificates from PEM into a JKS
	Sample Setup

	Management
	Starting and Stopping the XtreemFS services
	Web-based Status Page
	Creating Volumes
	Deleting Volumes

	The XtreemFS Client
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Mounting and Un-mounting

	XtreemFS Tools
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Maintenance Tools
	MRC Database Conversion
	Scrubbing and Cleanup

	User Tools
	Reading XtreemFS-specific File Info
	Changing Striping Policies
	Changing Replica Selection Policy
	Read-Only Replication

	Troubleshooting and Support
	Logfiles
	Support
	Troubleshooting

	XtreemOS Integration
	XtreemFS Security Preparations

	Command Line Utilities

