
The XtreemFS Installation and User Guide
Version 0.10.0

ii

XtreemFS is developed within the XtreemOS project. XtreemOS is a Linux-based
Grid operating system that transparently integrates Grid user, VO and resource man-
agement traditionally found in Grid Middleware. The XtreemOS project is funded
by the European Commission’s IST program under contract #FP6-033576.

XtreemFS is available from the XtreemFS website www.XtreemFS.org.

This document is c© 2008 by Björn Kolbeck, Jan Stender, Felix Hupfeld. All rights
reserved.

http://www.xtreemos.eu
http://www.XtreemFS.org

Contents

1 Quick Start vii

2 What is XtreemFS 1

2.1 About XtreemFS . 1

2.2 XtreemFS Architecture . 1

2.2.1 The Components of XtreemFS 2

2.2.2 Security . 3

2.3 Policies . 3

2.3.1 OSD Selection Policies . 3

2.3.2 Striping Policies . 3

2.3.3 Authorization - Access Policies 4

2.3.4 Pluggable Policies . 4

3 XtreemFS Services 7

3.1 Installation . 7

3.1.1 Prerequisites . 7

3.1.2 Installing from Pre-Packaged Releases 7

3.1.3 Installing from Sources . 8

3.2 Configuration . 8

3.2.1 A Word about UUIDs . 8

3.2.2 Authentication . 9

UNIX uid/gid - NullAuthProvider 9

Plain SSL Certificates - SimpleX509AuthProvider 9

XtreemOS Certificates - XOSAuthProvider 9

3.2.3 List of Configuration Options 10

authentication_provider 10

capability_secret . 10

checksums.enabled . 10

iii

iv CONTENTS

checksums.algorithm . 10

database.dir . 11

database.log . 11

database.checkpoint.interval 11

database.checkpoint.idle_interval 11

database.checkpoint.logfile_size 11

debug_level . 12

dir_service.host . 12

dir_service.port . 12

listen.address optional 12

listen.port . 12

local_clock_renewal . 13

no_atime . 13

no_fsync optional . 13

object_dir . 13

osd_check_interval . 14

remote_time_sync . 14

report_free_space . 14

ssl.enabled . 14

ssl.service_creds . 14

ssl.service_creds.container 15

ssl.service_creds.pw 15

ssl.trusted_certs . 15

ssl.trusted_certs.container 15

ssl.trusted_certs.pw 15

uuid . 15

3.2.4 DIR Configuration . 16

3.2.5 MRC Configuration . 16

3.2.6 OSD Configuration . 16

3.2.7 Configuring SSL Support 17

Converting PEM files to PKCS#12 17

Importing trusted certificates from PEM into a JKS 18

Sample Setup . 18

3.3 Management . 20

3.3.1 Starting and Stopping the XtreemFS services 20

3.3.2 Web-based Status Page . 20

3.3.3 Creating Volumes . 20

CONTENTS v

3.3.4 Deleting Volumes . 21

3.3.5 MRC Database Conversion 21

3.3.6 Scrubbing and Cleanup . 22

4 The XtreemFS Client 23

4.1 Installation . 23

4.1.1 Prerequisites . 23

4.1.2 Installing from Pre-Packaged Releases 23

4.1.3 Installing from Sources . 23

4.1.4 Mounting and Un-mounting 24

4.2 Reading XtreemFS-specific File Info 24

4.3 Changing Striping Policies . 25

5 Troubleshooting and Support 27

5.1 Logfiles . 27

5.2 Support . 27

A XtreemOS Integration 29

XtreemFS Security Preparations 29

B Command Line Utilities 31

vi CONTENTS

Chapter 1

Quick Start

This is the very short version to help you set up a local installation of XtreemFS.

1. Download XtreemFS RPMs/DEBs and install

(a) Download the RPMs or DEBs for your system from the XtreemFS web-
site

(b) open a root console (su or sudo)
(c) install with rpm -Uhv xtreemfs-client-0.10.0.rpm xtreemfs-server-0.10.0.rpm

2. Start the Directory Service:
/etc/init.d/xtreemfs-dir start

3. Start the Metadata Server:
/etc/init.d/xtreemfs-mrc start

4. Start the OSD:
/etc/init.d/xtreemfs-osd start

5. If not already loaded, load the FUSE kernel module:
modprobe fuse

6. Depending on your distribution, you may have to add users to a special group
to allow them to mount FUSE file systems. E.g.: In openSUSE users must be
in the group trusted, in Ubuntu in the group fuse. You may need to logout
and login again for the new group membership to become effective.

7. You can now close the root console and work as a regular user.

8. Wait a few seconds for the services to register at the directory service. You
can check the registry by opening the DIR status page in your favorite web
browser http://localhost:32638.

9. Create a new volume with a stripe size of 256kB:
xtfs_mkvol -p RAID0,256,1 http://localhost/myVolume

10. Create a mount point:
mkdir ˜/xtreemfs

vii

http://www.XtreemFS.com
http://www.XtreemFS.com
http://localhost:32638

viii CHAPTER 1. QUICK START

11. Mount XtreemFS on your computer:

xtfs_mount -o dirservice=http://localhost, \
volume_url=http://localhost/myVolume ~/xtreemfs

12. Have fun ;-)

13. To un-mount XtreemFS:
xtfs_umount ˜/xtreemfs

You can also mount this volume from other computers. First make sure that the
ports 32636, 32638 and 32640 are open for incoming TCP connections. You must
also specify a hostname that can be resolved by the remote machine! Finally, you
have to use http://hostname instead of http://localhost when mounting.

Chapter 2

What is XtreemFS

2.1 About XtreemFS

With XtreemFS you are about to install a modern distributed file system. As a dis-
tributed file system, XtreemFS stores your file data on several servers and you can
simply scale your file system by adding more hosts. XtreemFS is a full-featured file
system that supports the full POSIX file interface, including extended attributes (xat-
trs). In case of concurrent access by several distributed programs, XtreemFS provides
you currently with NFS close-to-open consistency.

XtreemFS has been designed for deployment in wide-area environments connected by
the Internet. This means that it allows you to mount an XtreemFS volume from any
location, given the right permissions; but it also implies that file system installations
can span multiple locations or data centers.

In a normal UNIX environment, XtreemFS has full permission and POSIX ACL
support. XtreemFS can also be integrated into X.509-based security architectures. Ac-
cess policies (as well several other policies) are pluggable and can be easily extended.
If you deploy XtreemFS as part of an XtreemOS installation, you will benefit from
its transparent integration with the XtreemOS Virtual Organization (VO) infrastruc-
ture in the form of dynamic user mappings and automatic mounting of home vol-
umes.

If you need high-performance access to your files, XtreemFS can help you with sup-
port for file striping: XtreemFS can store a file across several storage servers and
access the parts in parallel. The size of an individual stripe and the number of storage
servers used can be configured on a per-file or per-directory basis.

2.2 XtreemFS Architecture

XtreemFS implements an object-based file system architecture (Fig. 2.1). The name
of this architecture comes from the fact that an object-based file system splits file
content into a series of fixed-size objects and stores them on its storage servers. In
contrast to block-based file systems, the size of such an object can vary from file to
file.

1

2 CHAPTER 2. WHAT IS XTREEMFS

Figure 2.1: The XtreemFS architecture and components.

The metadata of a file (such as the file name or file size) is stored separate from the file
content on a Metadata server. This metadata server organizes file system metadata as
a set of volumes, each of which implements a separate file system namespace in form
of a directory tree.

2.2.1 The Components of XtreemFS

An XtreemFS installation contains three types of servers that can run on one or
several machines (Fig. 2.1):

• DIR - Directory Service
The directory service is the central registry for all services in XtreemFS. The
MRC uses it to discover storage servers.

• MRC - Metadata and Replica Catalog
The MRC stores the directory tree and file metadata such as file name, size
or modification time. Moreover, the MRC authenticates users and authorizes
access to files.

• OSD - Object Storage Device
An OSD stores arbitrary objects of files; clients read and write file data on
OSDs.

These servers are connected by the client to a file system. A client mounts one of
the volumes of the MRC in a local directory. It translates file system calls into RPCs
sent to the respective servers.
The client is implemented as a FUSE user-level driver that runs as a normal process.
FUSE itself is a kernel-userland hybrid that connects the user-land driver to Linux’
Virtual File System (VFS) layer where file system drivers usually live.

2.3. POLICIES 3

2.2.2 Security

As usual, XtreemFS security differentiates between authentication and authoriza-
tion. Authentication is the process of verifying a user’s or client’s identity, e.g. val-
idating and reading an X.509 certificate. In contrast, authorization is the process of
checking if a user has the permission to execute a certain operation, e.g. write access
to a file.

By default, XtreemFS uses unauthenticated and unencrypted TCP connections. How-
ever, SSL can be enabled in all XtreemFS services and the client. Using SSL requires
that all users and services provide valid X.509 certificates. Any data sent over a SSL
connection is encrypted. Using SSL, however, will increase the resource consump-
tion of all components, especially for connection setup (SSL handshake).

2.3 Policies

Many facets of the behavior of XtreemFS can be configured by means of policies.
A policy defines how a certain task is performed, e.g. how the MRC selects a set of
OSDs for a new file, or how it distinguishes between an authorized and an unau-
thorized user when files are accessed. Various policies have been defined that cover
different aspects.

2.3.1 OSD Selection Policies

When a new file is created, the MRC must decide which OSDs to use for storing
the file content. Based on the required number of OSDs defined in the file’s striping
policy, an OSD Selection Policy is responsible for selecting the most suitable OSDs.
OSD selection policies are assigned at volume granularity. Currently, there are the
following policies:

• Random OSD Selection (policy id 1)
Randomly selects OSDs from the list of all available OSDs that are alive and
have more than 2GB of free space left.

• Proximity-based OSD Selection (policy id 2)
Selects a group of OSDs that are close to each other. The distance is determined
by the IP address, i.e. OSDs on the same subnet are preferred. This policy is
particularly useful for striping, since it is desirable to have all OSDs at the same
site.

2.3.2 Striping Policies

XtreemFS allows the content of a file to be distributed among several storage devices
(OSDs). This has the benefit, that the file can be read or written in parallel on
multiple servers which increases the bandwidth. The more OSDs are used, the higher
the bandwidth available for reading or writing. The number of OSDs is called the
striping width.

4 CHAPTER 2. WHAT IS XTREEMFS

A striping policy is a rule that defines how the objects are distributed on the avail-
able OSDs. Currently, XtreemFS implements only the RAID0 policy which simply
stores the objects in a round robin fashion on the OSDs. The RAID0 policy has two
parameters. The striping width defines to how many OSDs the file is distributed.
The stripe size defines the size of each object.

2.3.3 Authorization - Access Policies

User authorization is managed by means of Access Policies. An access policy defines
the access rights for any user on any file or directory contained in a volume. When
creating a new volume, the access policy has to be chosen, which cannot be changed
in the future. Various access policies can be used:

• Authorize All Policy (policy Id 1)
No authorization - everyone can do everything. This policy is useful if perfor-
mance of metadata operations matters more than security, since no recursive
evaluation of access policies is done.

• POSIX ACLs & Permissions (policy Id 2)
This access policy implements the traditional POSIX permissions commonly
used on Linux, as well as POSIX ACLs, an extension that provides for ac-
cess control at the granularity of single users and groups. POSIX permissions
should be used as the default, as it guarantees maximum compatibility with
other file systems.

• Volume ACLs (policy Id 3)
Volume ACLs provide an access control model similar to POSIX ACLs &
Permissions, but only allow one ACL for the whole volume. This means that
there is no recursive evaluation of access rights (performance!), at the price of
a very coarse-grained access control.

2.3.4 Pluggable Policies

Administrators may extend the set of existing policies by defining plug-in policies.
Such policies are Java classes that implement a predefined policy interface. Currently,
the following policy interfaces exist:

• org.xtreemfs.common.auth.AuthenticationProvider
can be used to implement an individual mechanism to authenticate users and
groups

• org.xtreemfs.mrc.ac.FileAccessPolicy
can be used to implement an individual access control model on files, directo-
ries and volumes

• org.xtreemfs.mrc.osdselection.OSDSelectionPolicy
can be used to implement an individual policy for allocating OSDs to newly
created files

2.3. POLICIES 5

Note that there may only be one authentication provider per MRC, while file access
policies and OSD selection policies may differ for each volume. The former one
is identified by means of its class name (property authentication_provider, see
Sec. 3.2.5), while volume-related policies are identified by ID numbers. It is therefore
necessary to add a member field

public static final long POLICY_ID = 4711;

to all such policy implementations, where 4711 represents the individual ID num-
ber. Administrators have to ensure that such ID numbers neither clash with ID
numbers of built-in policies (1-9), nor with ID numbers of other plug-in policies.
When creating a new volume, IDs of plug-in policies may be used just like built-in
policy IDs.

Plug-in policies have to be deployed in the directory specified by the MRC config-
uration property policy_dir. The property is optional; it may be omitted if no
plug-in policies are supposed to be used. An implementation of a plug-in policy can
be deployed as a Java source or class file located in a directory that corresponds to
the package of the class. Library dependencies may be added in the form of source,
class or JAR files. JAR files have to be deployed in the top-level directory. All source
files in all subdirectories are compiled at MRC start-up time and loaded on demand.

6 CHAPTER 2. WHAT IS XTREEMFS

Chapter 3

XtreemFS Services

3.1 Installation

When installing XtreemFS, you can choose from two different installation sources:
you can download one of the pre-packaged releases that we create for most Linux
distributions or you can install directly from the source tarball. In the pre-packaged
release, the server and the client parts are split into separate packages.

3.1.1 Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to be in-
stalled on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK 1.6.0
or newer, Ant 1.6.5 or newer and gmake.

3.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-server-0.10.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-server-0.10.x.deb

Both packages will also install init.d scripts for an automatic start-up of the ser-
vices. Use insserv xtreemfs-dir, insserv xtreemfs-mrc and insserv xtreemfs-osd,
respectively, to automatically start the services during boot.

7

8 CHAPTER 3. XTREEMFS SERVICES

3.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make server

After successful build, you can use the provided installer

$> cd install
$> ./install

The installer script will guide you through a basic setup, install the services and
prepare start and stop scripts.

3.2 Configuration

Generally, the configuration files of XtreemFS are located in /etc/xos/xtreemfs/
if you installed from packages. If you used the installer for the source distribution,
the configuration file can be found in <INSTALLDIR>/config/ where <INSTALLDIR>
refers to the XtreemFS installation directory that you have chosen during installa-
tion.

3.2.1 A Word about UUIDs

XtreemFS uses UUIDs (Universally Unique Identifiers) to be able to identify services
and their associated state independently from the machine they are installed on. This
implies that you cannot change the uuid of a MRC or OSD after it has been used for
the first time!

The Directory Service keeps a mapping from UUID to a port number and IP address
or hostname. Currently, each UUID can only be associated with a single endpoint;
the netmask must be “*” which means that this mapping is valid in all networks.
Upon first start-up, OSDs and MRCs will create the mapping if it does not exist.
They will use the first available network device with a public address.

Changing the IP address, hostname or port is possible at any time. Due to the
caching of UUIDs in all components it can take some time until the new UUID
mapping is used by all OSDs, MRCs and clients. The TTL defines how long an
XtreemFS component is allowed to keep entries cached. The default value is 3600
seconds (1 hour). It should be set to shorter durations if services change their IP
address frequently.

To create a globally unique UUID you can use tools like uuidgen. During installa-
tion the post-install script will automatically create a UUID for each OSD and MRC
if it does not have a UUID assigned.

3.2. CONFIGURATION 9

3.2.2 Authentication

XtreemFS has an interface which allows MRC administrators to choose the way
of authenticating users. Basically, an MRC has two sources of information on users.
The first one is the user id and group ids sent by the client along with each request. In
addition, the MRC can use information included in the certificates if SSL is enabled.
The Authentication Providers are modules that implement different methods for
retrieving the user and group IDs to use.

UNIX uid/gid - NullAuthProvider

The NullAuthProvider is the default Authentication Provider. It simply uses the
user ID and group IDs sent by the XtreemFS client. This means that the client is
trusted to send the correct user/group IDs.

The XtreemFS Client will send the user ID and group IDs of the process which
executed the file system operation, not of the user who mounted the volume!

The superuser is identified by the user ID root and is allowed to do everything on
the MRC. This behavior is similar to NFS with no_root_squash.

Plain SSL Certificates - SimpleX509AuthProvider

XtreemFS supports two X.509 certificate “types” which can be used by the client.
When mounted with a service/host certificate the XtreemFS client is regarded as a
trusted system component. The MRC will accept any user ID and groups sent by
the client and use them for authorization as with the NullAuthProvider. This setup
is useful for volumes which are used by multiple users.

The second certificate type are regular user certificates. The MRC will only accept
the user name and group from the certificate and ignore the user ID and groups sent
by the client. Such a setup is useful if users are allowed to mount XtreemFS from
untrusted machines.

Both certificates are regular X.509 certificates. Service and host certificates are identi-
fied by a Common Name (CN) starting with host/ or xtreemfs-service/, which
can easily be used in existing security infrastructures. All other certificates are as-
sumed to be user certificates.

If a user certificate is used, XtreemFS will take the Distinguished Name (DN) as the
user ID and the Organizational Unit (OU) as the group ID.

Superusers must have xtreemfs-admin as part of their Organizational Unit (OU).

XtreemOS Certificates - XOSAuthProvider

In contrast to plain X.509 certificates, XtreemOS embeds additional user informa-
tion as extensions in XtreemOS-User-Certificates. This authentication provider uses
this information (global UID and global GIDs), but the behavior is similar to the
SimpleX509AuthProvider.

The superuser is identified by being member of the VOAdmin group.

10 CHAPTER 3. XTREEMFS SERVICES

3.2.3 List of Configuration Options

All configuration parameters that may be used to define the behavior of the different
services are listed in the following. Unless marked as optional, a parameter has to
occur (exactly once) in a configuration file.

authentication_provider

Services DIR, MRC
Values Java class name
Default org.xtreemfs.common.auth.NullAuthProvider
Description Defines the Authentication Provider to use to retrieve the user iden-

tity (user ID and group IDs). See Sec. 3.2.2 for details.

capability_secret

Services MRC, OSD
Values String
Default -
Description Defines a shared secret between the MRC and all OSDs. The secret

is used by the MRC to sign capabilities, i.e. security tokens for data
access at OSDs. In turn, an OSD uses the secret to verify that the
capability has been issued by the MRC.

checksums.enabled

Services OSD
Values true, false
Default false
Description If set to true, the OSD will calculate and store checksums for newly

created objects. Each time a checksummed object is read, the check-
sum will be verified.

checksums.algorithm

Services OSD
Values Adler32, CRC32, MD5, SHA-1
Default Adler32
Description Must be specified if checksums.enabled is enabled. This property

defines the algorithm used to create OSD checksums.

3.2. CONFIGURATION 11

database.dir

Services DIR, MRC
Values absolute file system path to a directory
Default DIR: /var/lib/xtreemfs/dir/database,

MRC: /var/lib/xtreemfs/mrc/database
Description The directory in which the Directory Service or MRC will store their

databases. This directory should never be on the same partition as any
OSD data, if both services reside on the same machine. Otherwise,
deadlocks may occur if the partition runs out of free disk space!

database.log

Services MRC
Values absolute file system path
Default MRC: /var/lib/xtreemfs/mrc/dblog
Description The file the MRC uses as the database operations log. This directory

should never be on the same partition as any OSD data, if both ser-
vices reside on the same machine. Otherwise, deadlocks may occur if
the partition runs out of free disk space!

database.checkpoint.interval

Services MRC
Values milliseconds
Default 180,000
Description The MRC regularly checks if it is necessary to create a database check-

point on disk. This parameter specifies the interval between two
checks.

database.checkpoint.idle_interval

Services MRC
Values milliseconds
Default 1,000
Description The MRC will only create a checkpoint if there have been no client re-

quests for the last database.checkpoint.idle_interval millisec-
onds.

database.checkpoint.logfile_size

Services MRC
Values kilobytes
Default 16,384
Description A checkpoint of the database will only be created if the

database.log has exceeded the specified file size.

12 CHAPTER 3. XTREEMFS SERVICES

debug_level

Services DIR, MRC, OSD
Values 0, 1, 2, 3, 10
Default 2
Description The debug level determines the amount and detail of information

written to logfiles. 0 logs errors only, 1 logs additional warnings, 2
logs errors, waining and info, 3 logs errors, warnings, info and de-
bug messages (generats large logfiles!), 10 also catches tracing output
(generates very large logfiles!).

dir_service.host

Services MRC, OSD
Values hostname or IP address
Default localhost
Description Specifies the hostname or IP address of the directory service (DIR)

at which the MRC or OSD should register. The MRC also uses this
directory service to find OSDs.

dir_service.port

Services MRC, OSD
Values 1 .. 65535
Default 32638
Description Specifies the port on which the remote directory service is listening.

Must be identical to the listen_port in your directory service con-
figuration.

listen.address optional

Services OSD
Values IP address
Default -
Description If specified, defines the interface to listen on. If not specified, the

service will listen on all interfaces (any).

listen.port

Services DIR, MRC, OSD
Values 1 .. 65535
Default DIR: 32638,

MRC: 32636,
OSD: 32640

Description The port to listen on for incoming connections (TCP). The OSD uses
TCP and UDP on the specified port. Make sure to configure your
firewall to allow incoming TCP and UDP traffic on the specified port.

3.2. CONFIGURATION 13

local_clock_renewal

Services MRC, OSD
Values milliseconds
Default 50
Description Reading the system clock is a slow operation on some systems

(e.g. Linux) as it is a system call. To increase performance,
XtreemFS services use a local variable which is only updated every
local_clock_renewal milliseconds.

no_atime

Services MRC
Values true, false
Default true
Description The POSIX standard defines that the atime (timestamp of last file ac-

cess) is updated each time a file is opened, even for read. This means
that there is a write to the database and hard disk on the MRC each
time a file is read. To reduce the load, many file systems (e.g. ext3)
including XtreemFS can be configured to skip those updates for per-
formance. It is strongly suggested to disable atime updates by setting
this parameter to true.

no_fsync optional

Services MRC
Values true, false
Default false
Description By default, the MRC will write all file-modifying operations (such as

create file, delete etc.) to disk followed by a fsync to ensure data is
written to the hard disk. While this ensures maximum data safety in
case of crash of the MRC server, it also reduces the performance of
the MRC. Set this to true, if you want much higher performance at
the risk of losing some recent file operations in case of a server crash.

object_dir

Services OSD
Values absolute file system path to a directory
Default /var/lib/xtreemfs/osd/
Description The directory in which the OSD stores the objects. This directory

should never be on the same partition as any DIR or MRC database,
if both services reside on the same machine. Otherwise, deadlocks
may occur if the partition runs out of free disk space!

14 CHAPTER 3. XTREEMFS SERVICES

osd_check_interval

Services MRC
Values seconds
Default 300
Description The MRC regularly asks the directory service for suitable OSDs to

store files on (see OSD Selection Policy, Sec. 2.3.1). This parameter
defines the interval between two updates of the list of suitable OSDs.

remote_time_sync

Services MRC, OSD
Values milliseconds
Default 30,000
Description MRCs and OSDs all synchronize their clocks with the directory ser-

vice to ensure a loose clock synchronization of all services. This is re-
quired for leases to work correctly. This parameter defines the interval
in milliseconds between time updates from the directory service.

report_free_space

Services OSD
Values true, false
Default true
Description If set to true, the OSD will report its free space to the directory ser-

vice. Otherwise, it will report zero, which will cause the OSD not to
be used by the OSD Selection Policies (see Sec. 2.3.1).

ssl.enabled

Services DIR, MRC, OSD
Values true, false
Default false
Description If set to true, the service will use SSL to authenticate and encrypt

connections. The service will not accept non-SSL connections if
ssl.enabled is set to true.

ssl.service_creds

Services DIR, MRC, OSD
Values path to file
Default DIR: /etc/xos/xtreemfs/truststore/certs/ds.p12,

MRC: /etc/xos/xtreemfs/truststore/certs/mrc.p12,
OSD: /etc/xos/xtreemfs/truststore/certs/osd.p12

Description Must be specified if ssl.enabled is enabled. Specifies the
file containing the service credentials (X.509 certificate and pri-
vate key). PKCS#12 and JKS format can be used, set
ssl.service_creds.container accordingly. This file is used dur-
ing the SSL handshake to authenticate the service.

3.2. CONFIGURATION 15

ssl.service_creds.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default pkcs12
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.service_creds file.

ssl.service_creds.pw

Services DIR, MRC, OSD
Values String
Default -
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the credentials file ssl.service_creds.

ssl.trusted_certs

Services DIR, MRC, OSD
Values path to file
Default /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
Description Must be specified if ssl.enabled is enabled. Specifies the file con-

taining the trusted root certificates (e.g. CA certificates) used to au-
thenticate clients.

ssl.trusted_certs.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default JKS
Description Must be specified if ssl.enabled is enabled. Specifies the file format

of the ssl.trusted_certs file.

ssl.trusted_certs.pw

Services DIR, MRC, OSD
Values String
Default -
Description Must be specified if ssl.enabled is enabled. Specifies the password

which protects the trusted certificates file ssl.trusted_certs.

uuid

Services DIR, MRC, OSD
Values String, but limited to alphanumeric characters, - and .
Default -
Description Must be set to a unique identifier, preferably a UUID according

to RFC 4122. UUIDs can be generated with uuidgen. Example:
eacb6bab-f444-4ebf-a06a-3f72d7465e40.

16 CHAPTER 3. XTREEMFS SERVICES

3.2.4 DIR Configuration

The directory service configuration is stored in dirconfig.properties.

debug_level = 0
listen.port = 32638
database.dir = /var/lib/xtreemfs/dir/database
ssl.enabled = false
authentication_provider = org.xtreemfs.common.auth.NullAuthProvider
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/ds.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

3.2.5 MRC Configuration

The directory service configuration is stored in mrcconfig.properties.

debug_level = 0
listen.port = 32636
dir_service.host = localhost
dir_service.port = 32638
database.dir = /var/lib/xtreemfs/mrc/database
database.log = /var/lib/xtreemfs/mrc/dblog
database.checkpoint.interval = 1800000
database.checkpoint.idle_interval = 1000
database.checkpoint.logfile_size = 16384
osd_check_interval = 300
no_atime = true
local_clock_renewal = 50
remote_time_sync = 60000
uuid = eacb6bab-f444-4ebf-a06a-3f72d7465e40
authentication_provider = org.xtreemfs.common.auth.NullAuthProvider
ssl.enabled = false
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/ds.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

3.2.6 OSD Configuration

The OSD service configuration is stored in osdconfig.properties.

debug_level = 0
listen.port = 32640

3.2. CONFIGURATION 17

listen.address = 127.0.0.1
dir_service.host = localhost
dir_service.port = 32638
object_dir = /var/lib/xtreemfs/objs/
local_clock_renewal = 50
remote_time_sync = 60000
report_free_space = true
uuid = eacb6bab-f444-4ebf-a06a-3f72d7465e40
ssl.enabled = false
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/ds.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

3.2.7 Configuring SSL Support

In order to enable certificate-based authentication in an XtreemFS installation, ser-
vices need to be equipped with X.509 certificates. Certificates are used to establish
a mutual trust relationship among XtreemFS services and between the XtreemFS
client and XtreemFS services.

It is not possible to mix SSL-enabled and non-SSL services in an XtreemFS installa-
tion!

Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have created and signed, the credentials may need to be converted into the
correct file format. XtreemFS services also need a trust store that contains all trusted
Certification Authority certificates.

By default, certificates and credentials for XtreemFS services are stored in

/etc/xos/xtreemfs/truststore/certs

Converting PEM files to PKCS#12

The simplest way to provide the credentials to the services is by converting your
signed certificate and private key into a PKCS#12 file using openssl:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service. The passwords chosen when
asked must be set as a property in the corresponding service configuration file.

18 CHAPTER 3. XTREEMFS SERVICES

Importing trusted certificates from PEM into a JKS

The certificate (or multiple certificates) from your CA (or CAs) can be imported
into a Java Keystore (JKS) using the Java keytool which comes with the Java JDK
or JRE.

Execute the following steps for each CA certificate using the same keystore file.

$> keytool -import -alias rootca -keystore trusted.jks
-trustcacerts -file ca-cert.pem

This will create a new Java Keystore trusted.jks with the CA certificate in the cur-
rent working directory. The password chosen when asked must be set as a property
in the service configuration files.

Note: If you get the following error

$> keytool error: java.lang.Exception: Input not an X.509 certificate

you should remove any text from the beginning of the certificate (until the ––-BEGIN
CERTIFICATE––- line).

Sample Setup

Users can easily set up their own CA (certificate authority) and create and sign cer-
tificates using openssl for a test setup.

1. Set up your test CA.

(a) Create a directory for your CA files

$> mkdir ca

(b) Create a private key and certificate request for your CA.

$> openssl req -new -newkey rsa:1024 -nodes -out ca/ca.csr \
-keyout ca/ca.key

Enter something like XtreemFS-DEMO-CA as the common name (or
something else, but make sure the name is different from the server and
client name!).

(c) Create a self-signed certificate for your CA which is valid for one year.

$> openssl x509 -trustout -signkey ca/ca.key -days 365 -req\
-in ca/ca.csr -out ca/ca.pem

(d) Create a file with the CA’s serial number

$> echo "02" > ca/ca.srl

2. Set up the certificates for the services and the XtreemFS Client.
Replace service with dir, mrc, osd and client.

(a) Create a private key for the service.
Use XtreemFS-DEMO-service as the common name for the certificate.

3.2. CONFIGURATION 19

$> openssl req -new -newkey rsa:1024 -nodes
-out service.req
-keyout service.key

(b) Sign the certificate with your demo CA.
The certificate is valid for one year.
$> openssl x509 -CA ca/ca.pem -CAkey ca/ca.key

-CAserial ca/ca.srl -req
-in service.req
-out service.pem -days 365

(c) Export the service credentials (certificate and private key) as a PKCS#12
file.
Use “passphrase” as export password. You can leave the export password
empty for the XtreemFS Client to avoid being asked for the password on
mount.
$> pkcs12 -export -in service.pem -inkey

service.key
-out service.p12 -name "service"

(d) Copy the PKCS#12 file to the certificates directory.
$> mkdir -p /etc/xos/xtreemfs/truststore/certs

$> cp service.p12 /etc/xos/xtreemfs/truststore/certs

3. Export your CA’s certificate to the trust store and copy it to the certificate dir.
You should answer “yes” when asked “Trust this certificate”.
Use “passphrase” as passphrase for the keystore.

$> keytool -import -alias ca -keystore trusted.jks\
-trustcacerts -file ca/ca.pem

$> cp trusted.jks /etc/xos/xtreemfs/truststore/certs

4. Configure the services. Edit the configuration file for all your services. Set the
following configuration options (see Sec. 3.2 for details).
use_ssl = true
ssl_service_creds_pw = passphrase
ssl_service_creds_container = pkcs12
ssl_service_creds = /etc/xos/xtreemfs/truststore/certs/service.p12
ssl_trusted_certs = /etc/xos/xtreemfs/truststore/certs/trusted.jks
ssl_trusted_certs_pw = passphrase
ssl_trusted_certs_container = jks

5. Start up the XtreemFS services (see Sec. 3.3.1).

6. Create a new volume (see Sec. 3.3.3 for details).

$> xtfs_mkvol -c /etc/xos/xtreemfs/truststore/certs/client.p12 \
-p RAID0,256,1 https://localhost/test

7. Mount the volume (see Sec. 4.1.4 for details).

$> xtfs_mount -o ssl_cert=\
/etc/xos/xtreemfs/truststore/certs/client.p12, \
volume_url=https://localhost/test /mnt

20 CHAPTER 3. XTREEMFS SERVICES

3.3 Management

3.3.1 Starting and Stopping the XtreemFS services

If you installed a pre-packaged release you can start, stop and restart the services with
the init.d scripts:

$> /etc/init.d/xtreemfs-ds start
$> /etc/init.d/xtreemfs-mrc start
$> /etc/init.d/xtreemfs-osd start

or

$> /etc/init.d/xtreemfs-ds stop
$> /etc/init.d/xtreemfs-mrc stop
$> /etc/init.d/xtreemfs-osd stop

Note that the Directory Service should be started first, in order to allow other ser-
vices an immediate registration. Once a Directory Service and at least one OSD and
MRC are running, XtreemFS is operational.

If you installed from sources, you will find a start.sh and stop.sh script in the
install directory. These scripts will automatically start/stop all services you installed
on the machine.

3.3.2 Web-based Status Page

The XtreemFS services all have a HTML status page which can be used to check if
the service is working correctly (Fig. 3.1). It can be displayed by opening the service
URL in your favorite web browser, e.g.
http://my-mrc-host.com:32636/. If you use SSL you should first import the
client credentials (PKCS#12 file) into your webbrowser’s credential store.

3.3.3 Creating Volumes

Volumes can be created with the xtfs_mkvol command line utility. Please see man
xtfs_mkvol for a full list of options and usage.

When creating a volume, it is recommended to specify the access policy (see Sec.
2.3.3). If not specified, POSIX permissions/ACLs will be chosen by default. Access
policies cannot be changed afterwards.

An OSD selection policy (see Sec. 2.3.1) can also be specified per volume, but can
be changed anytime. By default, a random selection of available OSDs is assigned to
newly created files.

In addition, it is recommended to set a default striping policy (see Sec. 2.3.2). If no
per-file or per-directory default striping policy overrides the volume’s default striping
policy, the volume’s policy is used for new files and directories. If no volume policy
is explicitly defined, a RAID0 policy with a stripe size of 4kB and a width of 1 will
be assigned to the volume.

3.3. MANAGEMENT 21

Figure 3.1: OSD status web page

An example call to xtfs_mkvol for creating a volume with POSIX ACLs, 256kB
stripe size and a stripe width of 1 (which means no striping):

$> xtfs_mkvol -a 2 -p RAID0,256,1 \
http://my-mrc-host.com:32636/myVolume

3.3.4 Deleting Volumes

The xtfs_rmvol tool can be used to delete a volume. This also deletes all files and
data on that volume! Please see man xtfs_rmvol for a full list of options and usage.

Example call to xtfs_rmvol to delete myVolume:

$> xtfs_rmvol http://my-mrc-host.com:32636/myVolume

3.3.5 MRC Database Conversion

The format in which the MRC stores its data on disk may change with future
XtreemFS versions. In order that XtreemFS server components may be updated
without losing the whole content of the file system, it is possible to create a version-
independent XML representation of the metadata stored in MRC database.

Such an XML representation can e.g. be created as follows:

$> xtfs_mrcdbtool http://my-mrc-host.com:32636 \
dump /tmp/dump.xml

22 CHAPTER 3. XTREEMFS SERVICES

This call will create a file dump.xml containing the entire MRC database content in
the /tmp directory at my-mrc-host.com.

To restore an MRC database from a dump, execute

$> xtfs_mrcdbtool http://my-mrc-host.com:32636 \
restore /tmp/dump.xml

This will restore the database stored in /tmp/dump.xml at my-mrc-host.com. Note
that for safety reasons, it is only possible to restore a database from a dump if the
database of the running MRC does not have any content. To restore an MRC
database, it is thus necessary to delete all MRC database files before starting the
MRC.

3.3.6 Scrubbing and Cleanup

In real-world environments, errors occur in the course of creating, modifying or
deleting files. This can cause corruptions of file data or metadata. Such things happen
e.g. if the client is suddenly terminated, or loses connection with a server component.
There are several such scenarios: if a client writes to a file but does not report file
sizes received from the OSD back to the MRC, inconsistencies between the file size
stored in the MRC and the actual size of all objects in the OSD will occur. If a client
deletes a file from the directory tree, but cannot reach the OSD, orphaned objects
will remain on the OSD. If an OSD is terminated during an ongoing write operation,
file content will become corrupted.

In order to detect and, if possible, resolve such inconsistencies, tools for scrubbing
and OSD cleanup exist. To check the consistency of file sizes and checksums, the
following command can be executed:

$> xtfs_scrub -dir http://my-dir-host.com:32638 \
http://my-mrc-host.com:32636/myVolume

This will scrub each file in the volume myVolume, i.e. check file size consistency
and set the correct the file size on the MRC, if necessary, and check whether an
invalid checksum in the OSD indicates a corrupted file content. The -dir argument
specifies the directory service that will be used to resolve service UUIDs. Please see
man xtfs_scrub for further details.

A second tool searches an OSD for orphaned objects, which can be used as follows:

$> xtfs_cleanup -dir http://my-dir-host.com:32638 \
http://my-osd-host.com:32640

This will touch all objects stored on the given OSD and check whether a metadata
representation exists on the responsible MRC. If this is not the case, the objects may
either be deleted, or assigned to new files in a lost+found directory at the top level
of the volume. Please see man xtfs_cleanup for further details.

Chapter 4

The XtreemFS Client

4.1 Installation

As for the XtreemFS Services, there are two different installation sources for the
XtreemFS Client: pre-packaged releases and source tarballs.

4.1.1 Prerequisites

For both installations you need FUSE 2.6 or newer, openSSL 0.9.8 or newer and a
Linux 2.6 kernel.
To build the XtreemFS Client from sources, you need the openSSL headers (e.g.
openssl-devel package), gmake 3.81 or newer and gcc 4.1.2 or newer.

4.1.2 Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS) you can
install the package with

$> rpm -i xtreemfs-client-0.10.x.rpm

For Debian-based distributions, please use the .deb package provided and install it
with

$> dpkg -i xtreemfs-client-0.10.x.deb

4.1.3 Installing from Sources

Extract the tarball with the sources. Change to the top level directory and execute

$> make client

You can copy the driver xtfs_mount from AL/src and the utilities from the AL/tools
directory.

23

24 CHAPTER 4. THE XTREEMFS CLIENT

4.1.4 Mounting and Un-mounting

Before mounting XtreemFS volumes, please ensure that the FUSE kernel module is
loaded. Please check your distribution’s manual to see, if users must be in a special
group (e.g. trusted in openSUSE) to be allowed to mount FUSE.

$> su
Password:
#> modprobe fuse
#> exit

To mount an XtreemFS volume use the xtfs_mount tool.

$> xtfs_mount -o dirservice=http://remote.dir.machine \
-o volume_url=http://remote.mrc.machine/myVolume \
/xtreemfs

The -o volume_url=URL option is mandatory and specifies which volume to mount.
-o dirservice=URL option is mandatory as well and must point to the directory
service. The first and only argument points to a directory on the local file system
in which to mount the XtreemFS volume. For more options, please refer to man
xtfs_mount.

A fuse mount is normally private for one user. To allow other users on the system
or permit root to use the mounted volume as well, the -o allow_other and -o
allow_root options can be passed to xtfs_mount, respectively. They are, however,
mutually exclusive. In order to use these options, the system administrator must cre-
ate a FUSE configuration file /etc/fuse.conf and add a line user_allow_other.

Volumes are unmounted using the xtfs_umount tool.

$> xtfs_umount /xtreemfs

4.2 Reading XtreemFS-specific File Info

In addition to the regular file system information provided by the stat Linux utility,
XtreemFS provides the xtfs_stat tool which displays XtreemFS specific informa-
tion for a file or directory.

$> cd /xtreemfs
$> echo ’Hello World’ > test.txt
$> xtfs_stat test.txt

will produce output similar to the following

filename test.txt
XtreemFS url http://localhost:32636/xtreemfs/test.txt
XtreemFS fileID 0015582D7FB759C07448D990:5
object type regular file

4.3. CHANGING STRIPING POLICIES 25

owner xtreemfs
group users

XtreemFS replica list
list version 1
replica 1 policy RAID0,128kb,1
replica 1 OSDs [localhost:32641]

The XtreemFS url can be used to retrieve the volume URL and the path of the file
on the volume. The fileID is the unique identifier of the file used on the OSDs
to identify the file’s objects. The owner/group fields are shown as reported by the
MRC, you may see other names on your local system if there is no mapping (i.e. the
file owner does not exist as a user on your local machine). Finally, the XtreemFS
replica list shows the striping policy of the file, the number of replicas and for each
replica, the OSDs used to store the objects.

4.3 Changing Striping Policies

It is not (yet) possible to change the striping policy of an existing file, as this would
require moving and reformatting data among OSDs. However, individual striping
policies can be assigned to new files (i.e. empty files) by changing the default striping
policy of the parent directory or volume. For this purpose, XtreemFS provides the
xtfs_sp tool. The tool can be used to change the striping policy that will be assigned
to newly created files.

$> xtfs_sp set /xtreemfs RAID0,128,3

In addition, the tool can be used to retrieve the default striping policy of a volume
or directory.

$> xtfs_sp get /xtreemfs

The output will be similar to the following:

RAID0,128,3

When creating a new file, XtreemFS will first check whether a default striping policy
has been assigned to the parent directory. If this is not the case, the default striping
policy for the volume will be used as the striping policy for the new file.

26 CHAPTER 4. THE XTREEMFS CLIENT

Chapter 5

Troubleshooting and Support

5.1 Logfiles

The logfiles for the XtreemFS services are located in /var/log/xtreemfs. The
client logfile must be specified with the -o logfile=/var/log/xtreemfs/client1.log
mount option to xtfs_mount, otherwise the client messages will go to your syslog.

5.2 Support

Please visit the XtreemFS website at www.XtreemFS.org for links to the user mailing
list and IRC channel.

27

http://www.XtreemFS.org

28 CHAPTER 5. TROUBLESHOOTING AND SUPPORT

Appendix A

XtreemOS Integration

XtreemFS Security Preparations

XtreemFS can be integrated in an existing XtreemOS VO security infrastructure.
XtreemOS uses X.509 certificates to authenticate users in a Grid system, so the gen-
eral setup is similar to a normal SSL-based configuration.
Thus, in an XtreemOS environment, certificates have to be created for the services
as a first step. This is done by issuing a Certificate Signing Request (CSR) to the RCA
server by means of the create-server-csr command. For further details, see the
Section Using the RCA in the XtreemOS User Guide.
Signed certificates and keys generated by are RCA infrastructure are stored locally in
PEM format. Since XtreemFS services are currently not capable of processing PEM
certificates, keys and certificates have to be converted to PKCS12 and Java Keystore
format, respectively.
Each XtreemFS service needs a certificate and a private key in order to be run. Once
they have created and signed, the conversion has to take place. Assuming that cer-
tificate/private key pairs reside in the current working directory for the Directory
Service, an MRC and an OSD (ds.pem, ds.key, mrc.pem, mrc.key, osd.pem and
osd.key), the conversion can be initiated with the following commands:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each containing
the private key and certificate for the respective service.
XtreemFS services need a trust store that contains all trusted Certification Author-
ity certificates. Since all certificates created via the RCA have been signed by the
XtreemOS CA, the XtreemOS CA certificate has to be included in the trust store.
To create a new trust store containing the XtreemOS CA certificate, execute the
following command:

29

30 APPENDIX A. XTREEMOS INTEGRATION

$> keytool -import -alias xosrootca -keystore xosrootca.jks
-trustcacerts -file
/etc/xos/truststore/xtreemosrootcacert.pem

This will create a new Java Keystore xosrootca.jks with the XtreemOS CA cer-
tificate in the current working directory. The password chosen when asked will later
have to be added as a property in the service configuration files.

Once all keys and certificates have been converted, the resulting files should be
moved to /etc/xos/xtreemfs/truststore/certs as root:

mv ds.p12 /etc/xos/xtreemfs/truststore/certs
mv mrc.p12 /etc/xos/xtreemfs/truststore/certs
mv osd.p12 /etc/xos/xtreemfs/truststore/certs
mv xosrootca.jks /etc/xos/xtreemfs/truststore/certs

For setting up a secured XtreemFS infrastructure, each service provides the following
properties:

specify whether SSL is required
use_ssl = true

server credentials for SSL handshakes
ssl_service_creds = /etc/xos/xtreemfs/truststore/certs/\
service.p12
ssl_service_creds_pw = xtreemfs
ssl_service_creds_container = pkcs12

trusted certificates for SSL handshakes
ssl_trusted_certs = /etc/xos/xtreemfs/truststore/certs/\
xosrootca.jks
ssl_trusted_certs_pw = xtreemfs
ssl_trusted_certs_container = jks

service.p12 refers to the converted file containing the credentials of the respective
service. Make sure that all paths and passphrases (xtreemfs in this example) are
correct.

Appendix B

Command Line Utilities

xtfs_mount The XtreemFS client which mounts an XtreemFS volume locally on a
machine.

xtfs_umount Un-mounts a mounted XtreemFS volume.

xtfs_showmount Shows all locally mounted XtreemFS volumes.

xtfs_mkvol Creates a new volume on an MRC.

xtfs_lsvol Lists the volumes on an MRC.

xtfs_rmvol Deletes a volume and all files on that volume from the MRC and the
OSDs.

xtfs_stat Displays XtreemFS specific file information such as the striping policy and
the OSDs.

xtfs_sp Displays and modifies the striping policy for a file, or the default striping
policy for directories and volumes.

xtfs_scrub Examines all files in a volume for incorrect file sizes and checksums. In
case of incorrect file sizes, file sizes are corrected at the MRC.

xtfs_cleanup Deletes orphaned objects on an OSD or creates new metadata objects
for orphaned files.

xtfs_mrcdbtool Dumps an XML representation of the MRC database to a given
directory in the MRC’s local file system.

31

Index

Access Policy, 4
Authorize All, 4
POSIX ACLs, 4
POSIX Permissions, 4
Volume ACLs, 4

allow_others option, 24
allow_root option, 24
Architecture, 1
Authentication, 3
Authentication Provider, 9

NullAuthProvider, 9
SimpleX509AuthProvider, 9
XOSAuthProvider, 9

Authorization, 3
Authorize All Access Policy, 4

CA
Certificate Authority, 18

Certificate, 3, 17
Certificate Authority, 18
Client, 2
Create Volume, 20
Credentials, 17

Delete Volume, 21
DIR, 2
Directory Service, 2

fileID, 25
FUSE, 2

init.d, 20

Java KeyStore, 18
JKS, 18

Logfile, 27

Metadata, 2
Metadata and Replica Catalog, 2
Metadata Server, 2
Mount, 24

Mounting, 2
MRC, 2

NullAuthProvider, 9

Object, 1
Object Storage Device, 2
Object-base File System, 1
OSD, 2
OSD Selection Policy, 3

Proximity-based, 3
Random, 3

PKCS#12, 17
Policy

Access Policy, 4
OSD Selection Policy, 3
Striping Policy, 4

POSIX ACLs Access Policy, 4
POSIX Permissions Access Policy, 4
Proximity-based OSD Selection, 3

RAID0, 4
Random OSD Selection, 3

SimpleX509AuthProvider, 9
SSL, 3
Status Page, 20
Storage Server, 2
Stripe Size, 4
Striping, 3

Stripe Size, 4
Striping Width, 3

Striping Policy, 4

Unmount, 24
user_allow_other option, 24
UUID, 8

VFS, 2
Volume, 2

Create, 20

32

INDEX 33

Delete, 21
Mount, 24
Un-mount, 24

Volume ACLs Access Policy, 4

Width, Striping Width, 3

X.509, 3, 17
XOSAuthProvider, 9
xtfs_mkvol, 20
xtfs_mount, 24
xtfs_rmvol, 21
xtfs_sp, 25
xtfs_stat, 24
xtfs_umount, 24
XtreemFS stat, 24
XtreemFS striping policy tool, 25
XtreemOS

Integration, 29
XtreemOS Certificates, 9

	Quick Start
	What is XtreemFS
	About XtreemFS
	XtreemFS Architecture
	The Components of XtreemFS
	Security

	Policies
	OSD Selection Policies
	Striping Policies
	Authorization - Access Policies
	Pluggable Policies

	XtreemFS Services
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Configuration
	A Word about UUIDs
	Authentication
	UNIX uid/gid - NullAuthProvider
	Plain SSL Certificates - SimpleX509AuthProvider
	XtreemOS Certificates - XOSAuthProvider

	List of Configuration Options
	authentication_provider
	capability_secret
	checksums.enabled
	checksums.algorithm
	database.dir
	database.log
	database.checkpoint.interval
	database.checkpoint.idle_interval
	database.checkpoint.logfile_size
	debug_level
	dir_service.host
	dir_service.port
	listen.address optional
	listen.port
	local_clock_renewal
	no_atime
	no_fsync optional
	object_dir
	osd_check_interval
	remote_time_sync
	report_free_space
	ssl.enabled
	ssl.service_creds
	ssl.service_creds.container
	ssl.service_creds.pw
	ssl.trusted_certs
	ssl.trusted_certs.container
	ssl.trusted_certs.pw
	uuid

	DIR Configuration
	MRC Configuration
	OSD Configuration
	Configuring SSL Support
	Converting PEM files to PKCS#12
	Importing trusted certificates from PEM into a JKS
	Sample Setup

	Management
	Starting and Stopping the XtreemFS services
	Web-based Status Page
	Creating Volumes
	Deleting Volumes
	MRC Database Conversion
	Scrubbing and Cleanup

	The XtreemFS Client
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources
	Mounting and Un-mounting

	Reading XtreemFS-specific File Info
	Changing Striping Policies

	Troubleshooting and Support
	Logfiles
	Support

	XtreemOS Integration
	XtreemFS Security Preparations

	Command Line Utilities

